
Duración 2:00 horas

1.- (2526C2 5/10) Considere el circuito de la figura. La tensión directa de los leds es Vf=2V, por lo
que no es posible encender los dos leds simultáneamente con una tensión de alimentación de
3V. Explique y haga un programa en ensamblador del MSP430 que gestione por multitarea
cooperativa y en el modo de menor consumo el encendido/apagado de los leds en función de
los pulsadores. Inicialmente ambos leds están apagados, pero el led activo es el L1 y el modo
de pulsación. Cada vez que se pulsa S2, se cambia el led activo. En modo de pulsación, cada
vez que se pulsa S1 se enciende el led activo y se apaga cuando se suelta. En modo de
conmutación, cada pulsación de S1 hace que se invierta el estado del led activo. Se cambia
de modo cuando se pulsa S2 estando S1 pulsado.

Nota: Considere los pulsadores libres de rebotes, el perro guardián desactivado, los puertos
desbloqueados y la pila inicializada. Dispone de la librería st.asm y la función cmp32.

SOLUCIÓN

Dado que los pulsadores no tienen resistencia externa, hay que usar las internas. En este caso
debe ser de pull-down.

Los leds se controlan con una única línea y se dispone de 3 estados: en modo entrada los dos
leds están apagados; en modo salida se enciende L1 cuando se escribe un 0 y L2 si se escribe
un 1.

Como hay que actuar en los flancos, será necesario detectarlos y, dado que no se dispone de
interrupciones, se codificará la tarea como una sencilla máquina de estados que guardará el
valor anterior de la tecla. Al tratarse de dos teclas, o bien se codifica una tarea con 4 estados,
o bien 2 tareas con 2 estados. La lectura de las teclas se hará con la periodicidad suficiente y
sin necesidad de gestionar los tiempos, puesto que son tareas interactivas. Se escoge 100Hz
como frecuencia del SystemTimer.

.cdecls C,LIST,"msp430ports.h"

.cdecls C,LIST,"st.h"
;------------------------------
; Datos de configuración
;------------------------------
; *** Puertos de E/S ***
LEDSBIT .equ BIT0
LEDSPORT .equ P1IN
S1BIT .equ BIT1
S1PORT .equ P1IN
S2BIT .equ BIT2
S2PORT .equ P1IN

;Frecuencia de los distintos procesos. En Hz
FTECLA .equ 100 ;Frecuencia de escaneo de la tecla

MSP430 P1.0 R

100

3V3V

P1.2
L1

L2

P1.1

3V

S1 S2

SISTEMAS BASADOS EN MICROPROCESADOR Segundo parcial 2025-2026

Apellidos:.........................SOLUCIÓN..

Nombre:...

P1 P2

; *** Frecuencia del System Timer ***
FTA .equ 32768 ;Frecuencia del reloj del TA. Hz
FST .equ 100 ;Frecuencia del SystemTimer. Hz

;------------------------------
; Constantes calculadas
;------------------------------
CCR0 .equ FTA/FST-1 ;Valor a programar en CCR0 para stIni
PERIODO .equ FST/FTECLA ;Tiempo entre ejecuciones (TICs)

;------------------------------
; Variables
;------------------------------

.bss Banderas, 1 ;Bit 0: Modo (0:pulsación, 1:conmutación)
;Bit 1: Estado de pulsación de S1 (0: no pulsado)
;Bit 2: Estado de pulsación de S2 (0: no pulsado)

MODO .equ BIT0 ;Modo de las teclas
TECLA1 .equ BIT1 ;Estado de la tecla 1
TECLA2 .equ BIT2 ;Estado de la tecla 2

;--
; main v1.0
;--
main ;Inicializar SystemTimer

mov.w #CCR0, r12
call #stIni

;Inicializar procesos
call #Inicializa

superbucle call #TeclaS1 ;Tarea que gestiona S1
call #TeclaS2 ;Tarea que gestiona S2
bis.w #LPM3+GIE, sr ;Entrar en bajo consumo
jmp superbucle
.intvec RESET_VECTOR, main
.text

;--
; Inicializa v1.0
;
; Inicializar proceso
;--
Inicializa clr.b &Banderas

;bic.b #LEDSBIT, &LEDSPORT+POUT ;L1 activo
;bic.b #LEDSBIT, &LEDSPORT+PDIR ;Pero apagado
;bic.b #S1BIT, &S1PORT+PDIR ;S1 como entrada
;bic.b #S2BIT, &S2PORT+PDIR ;S2 como entrada
bis.b #S1BIT, &S1PORT+PREN ;Habilitar resistencia
bic.b #S1BIT, &S1PORT+POUT ;...de pulldown
bis.b #S2BIT, &S2PORT+PREN ;Habilitar resistencia
bic.b #S2BIT, &S2PORT+POUT ;...de pulldown
ret

;--
; Proceso de tecla S1 v1.0
;--
TeclaS1 bit.b #TECLA1, &Banderas ;Estado anterior tecla. Pulsada?

jnz S1Pul ;...sí. Ver si flanco de bajada
;La tecla estaba suelta. Sigue suelta?

S1NoPul bit.b #S1BIT, &S1PORT+PIN ;...no. Pulsada ahora?
jz TeclaS1Fin ;...no. Salir
;Se acaba de pulsar S1. Conmutar led activo
jmp TeclaS1Cnm ;Conmutar y guardar estado
;La tecla estaba pulsada. Sigue pulsada?

S1Pul bit.b #S1BIT, &S1PORT+PIN ;Pulsada ahora?
jnz TeclaS1Fin ;...sí. Salir
;Se acaba de soltar S1. Conmutar led activo si modo conmutación

bit.b #MODO, &Banderas ;Modo pulsación?
jnz TeclaS1Fnc ;...no. Salir

TeclaS1Cnm xor.b #LEDSBIT, &LEDSPORT+PDIR ;...sñi. Conmutar led
TeclaS1Fnc xor.b #TECLA1, &Banderas ;Guardar estado estado de tecla
TeclaS1Fin ret

;--
; Proceso de tecla S2 v1.0
;--
TeclaS2 bit.b #TECLA2, &Banderas ;Estado anterior tecla. Pulsada?

jnz S2Pul ;...sí. Ver si flanco de bajada
;La tecla estaba suelta. Sigue suelta?

S2NoPul bit.b #S2BIT, &S2PORT+PIN ;...no. Pulsada ahora?
jz TeclaS2Fin ;...no. Salir
;Se acaba de pulsar S2. Cambiar led activo y ver si cambiar modo
xor.b #LEDSBIT, &LEDSPORT+POUT ;...sí. Cambiar led activo
bit.b #S1BIT, &S1PORT+PIN ;Pulsada S1 también?
jz TeclaS2Fnc ;...no. Salir guardando tecla
xor.b #MODO, &Banderas ;...sí. Conmutar modo
jmp TeclaS2Fnc ;Salir guardando estado de tecla
;La tecla estaba pulsada. Sigue pulsada?

S2Pul bit.b #S2BIT, &S2PORT+PIN ;Pulsada ahora?
jnz TeclaS2Fin ;...sí. Salir

TeclaS2Fnc xor.b #TECLA2, &Banderas ;...no. Tecla suelta. Guardar estado
TeclaS2Fin ret

CRITERIO DE CORRECCIÓN

• Constantes: 10%
• Prinicipal: 10%
• Proceso S1: 40%
• Proceso S2: 40%

2.- (2324 C2 5/10) El WS2812B es un módulo RGB inteligente que integra lógica de
comunicaciones, tres controladores PWM, un led rojo, uno verde y otro azul dentro de cada
píxel, permitiendo iluminar individualmente con hasta 256 niveles de brillo cada led y dando
224=16,777.216 colores. Los píxeles se conectan en cascada usualmente en tiras o paneles,
usando un solo pin de datos; funcionan a 5V y son populares para proyectos de iluminación
personalizados debido a su flexibilidad y capacidad de crear efectos visuales complejos.

La comunicación se hace por una única línea de datos. Se envían 24 bits por píxel, un byte por
color, empezando por el msb en el orden RGB (rojo, verde, azul). Cada píxel se queda con los
primeros 24 bits que le llegan y retransmite los demás, permitiendo que la información llegue
al resto de leds de la tira. La transmisión de un 0 consiste en poner la línea en alto durante
Tbase, y en bajo durante 2*Tbase. La transmisión de un 1 mantiene la línea en alto durante
2*Tbase, y en bajo Tbase (ver figura). Además, un código de reset consiste en dejar la
línea a 0 durante al menos 50us. Hace que cada píxel actualice el color según la información
recibida y que espere una nueva recepción. Tbase=500ns.

Realice un programa en ensamblador del MSP430 que configure el puerto P1.0 en su función
primaria (TA0.1) para controlar una tira de 64 píxeles WS2812B con la ayuda del TA0 y por
intrerrupciones. El programa mantendrá un vector llamado Leds con la información de color
de los píxeles y los enviará por la línea cada 20ms (es decir, a 50 fps o frames per second).

Con objeto de que la CPU no se vea sobrecargada en exceso, aumente la frecuencia de la
misma a 16MHz. Minimice también el número de interrupciones del TA0 configurándolo para

Vcc

P1.0

GND

Código 0

Código 1

Tbase

que genere los códigos a enviar por la línea usando el modo PWM (sólo una IRQ por bit en
lugar de 2). Al final de la secuencia de bits deberá generar un código de reset para actualizar
los leds y dejarlos listos para el siguiente ciclo.

Minimice el consumo del sistema (optimice el código, use los modos de bajo consumo,...).
Considere el perro guardián desactivado, los puertos desbloqueados y la pila inicializada.

SOLUCIÓN

Al inicio se programa el DCO en 16MHz y se baja el divisor de MCLK DIVM=1 para que la
CPU vaya a 16MHz. No se toca DIVS, con lo que el SMCLK sube a 2MHz, para que su
periodo sea 1/2MHz=500ns, coincidiendo con el Tbase.

El puerto se configura en modo salida con función primaria.

Se configurará el TA0 con fuente SMCLK/1 en modo UP (para que funcione en modo PWM
con CCR0=2. De esta forma, el TA0 hará 3 ciclos antes de resetearse. Se jugará con el valor
de CCR1 para generar las distintas señales del protocolo: CCR1=0 para generar el ciclo de
reset; CCR1=1 para generar el bit 0 y CCR1=2 parar generar el bit 1. Se activarán las
interrupciones de CCR0 para actualizar el ciclo de trabajo del ciclo siguiente. Se termina el
programa principal habilitando las interrupciones y entrando el modo LPM1 ya que se necesita
SMCLK activo. Todo lo demás, se hará por interrupciones.

Para gestionar las distintas fases del protocolo se usará la variable
EstadoTx=[ETX,ERESET,ECUADRO]. Inicialmente EstadoTx=ETX, BufferTx=Led[0],
CBit=8 y CLed=0.

Cuando EstadoTx=ETX, se procede a transmitir la trama almacenada en Leds que tiene un
tamaño 3*NUMPIXELS bytes. La variable CLed=[0,3*NUMPIXELS-1] (contador de leds) se
usará para indicar cuál es el byte que se está transmitiendo. Dicho byte se guarda
temporalmente en BufferTx para ir serializándolo. La variable CBit=[1,8] (contador de
bits) indica cuántos bits quedan por transmitir. Cuando se trasmiten todos los bits de la trama,
se pasa al estado ERESET.

Cuando EstadoTx=ERESET, se genera un silencio en la línea de 50us contando NRESET
ciclos de la señal PWM con la ayuda de la variable CReset=[1,NRESET]. Una vez que se
termina el ciclo de reset, se pasa a esperar que se cumplan los ciclos necesarios hasta
completar 20ms, contados desde que se inició la trasmisión. Cuando esto ocurra, pasamos al
estado ECUADRO.

Cada vez que se pasa por la IRQ del CCR0 se decrementa la variable
CPWM=[1,NCUADRO]para contar el número de ciclos de PWM que van pasando. NCUADRO se
ha calculado para que sea igual a 20ms. Terminados los 20ms se pasa al estado ETX para
repetir las transmisión de la trama.

.cdecls C,LIST,"msp430ports.h"
; Configuración de puertos --
WSBIT .equ BIT0
WSPORT .equ P1IN
; Constantes de configuración --
NPIXELS .equ 64 ;Número de píxels
FMCLK .equ 16000000 ;Frecuencia del MCLK. En Hz
TBASE .equ 500 ;Tiempo base WS2812. En ns
TRESET .equ 50000 ;Tiempo del pulso de reset. En ns
TCUADRO .equ 20000000 ;Tiempo del cuadro. En ns
RESPWM .equ 3 ;Resolución de PWM
; Constantes calculadas ---
FSMCLK .equ 1000000000/TBASE;Frecuencia del SMCLK. En Hz
DIVSMCLK .equ FMCLK/FSMCLK ;Divisor del SMCLK
TBIT .equ RESPWM*TBASE ;Tiempo bit WS2812. En ns
DIVTA .equ 1 ;Divisor de reloj para TA0
FTA .equ FSMCLK/DIVTA ;Frecuencia del TA0
FPWM .equ FTA/RESPWM ;Frecuencia del PWM
CCR0 .equ RESPWM-1 ;Valor del CCR0 para conseguir FPWM
NRESET .equ TRESET/TBIT+1 ;Número de ciclos PWM para un cuadro (por exceso)

NPWMCUADRO .equ TCUADRO/TBIT+1;Número de ciclos PWM para un cuadro (por exceso)
; Variables ---

.bss Leds,3*NPIXELS;Buffer de colores de píxels

.bss CPWM, 2, 2 ;Contador de ciclos PWM

.bss CLed, 2 ;Contador de colores actual [0..3*NPIXELS-1]

.bss CBit, 1 ;Contador de bit en el color actual

.bss CReset, 1 ;Contador de ciclos de PWM en reset

.bss BufTx, 1 ;Buffer de Tx

.bss EstadoTx, 1 ;Estado de Tx. 0:Tx trama; 1:Tx reset; 2:Tiemp cuadro
ETX .equ 0 ;Transmitiendo trama
ERESET .equ 1 ;Transmitiendo reset
ECUADRO .equ 2 ;Esperando tiempo entre cuadros
;--
; void main (void); v1.0
;--
main ;DCO a 16MHz. MCLK=DCO/1 y SMCLK=DCO/8.

mov.b #CSKEY_H, &CSCTL0_H ;Desbloquear CS
mov.w #DCOFSEL_4, &CSCTL1 ;DCO=16MHz
bic.w #DIVM1|DIVM0, &CSCTL3 ;DIVM=1, MCLK=16MHz
clr.b &CSCTL0_H ;Bloquear CS
;Inicializar variables
mov.w #NPWMCUADRO, &CPWM
mov.b #ETX, &EstadoTx
clr.w &CLed
mov.b #8, &CBit
mov.b &Leds, &BufTx
;TA0. Generación de la señal PWM que contola el servo
;Puertos. P1.0 salida función primaria
bis.b #WSBIT, &WSPORT+PDIR
bis.b #WSBIT, &WSPORT+PSEL0
;CCR0. Fija frecuencia de PWM
mov.w #CCR0, &TA0CCR0
mov.w #CCIE, &TA0CCTL0 ;IRQ tras cada bit
;CCR1. PWM en modo Reset/Set (PWM Positivo). Inicialmente Tx reset
mov.w #OUTMOD_0, &TA0CCTL1 ;Salida a 0 por defecto
mov.w #0, &TA0CCR1 ;DC=0 para primer bit fake
mov.w #OUTMOD_7, &TA0CCTL1 ;PWM positivo
;TA0, en modo UP con fuente SMCLK y divisor 1
mov.w #TASSEL__SMCLK|ID__1|MC__UP|TACLR, &TA0CTL

bis.w #GIE|LPM1, sr ;Entrar en bajo consumo

;--
; TA01ISR v1.0
;
; Subrutina de servicio de la IRQ de CCR0 de TA0. Genera la salida a los píxeles
;--
TA00ISR cmp.b #ETX, &EstadoTx ;Transmitiendo trama?

jeq TxTrama ;...sí. Ir a sección de transmisión
cmp.b #ECUADRO, &EstadoTx ;...no. Esperando siguiente cuadro?
jeq TA00ISRCdro ;...sí. Contarlo

TxReset dec.w &CReset ;...no. Contabillizar ciclo PWM en reset
jnz TA00ISRCdro ;Quedan ciclos? Sí, salir
mov.b #ECUADRO, &EstadoTx ;...no. Esperar hasta nuevo ciclo de tx
jmp TA00ISRCdro ;Salir

TxTrama push.w r12 ;Salvar resgistros
mov.w #1, r12 ;R12=1 (DC de valor lógico 0 por defecto)
rla.b &BufTx ;C=Siguiente bit a Tx
adc.w r12 ;Actualizar ciclo trabajo PWM
mov.w r12, &TA0CCR1 ;Preparado para siguiente bit
dec.w &CBit ;Contabilizar bit. Byte terminado?
jnz TA00ISRFTx ;...no. Salir
mov.b #8, &CBit ;...sí. Quedan 8 bits del siguiente color
mov.w &CLed, r12 ;R12=contador de color
inc.w r12 ;Siguiente color
cmp.w #3*NPIXELS, r12 ;Quedan?
jlo TA00ISRResF ;...sí. Salir
;...no. Transmitir pulso de reset

TA00ISRRes mov.b #ERESET, &EstadoTx ;Transmitir pulso de reset
mov.b #NRESET, &CReset ;Inicializar contador de reset
clr.w &TA0CCR1 ;DC=0 para trama de reset
clr.w r12 ;Ini contador de colores (sig ciclo)

TA00ISRResF mov.b Leds(r12), &BufTX ;Siguiente color al buffer
mov.w r12, &CLed ;Contador de led a memoria

TA00ISRFTx pop.w r12 ;Recuperar resgistros
TA00ISRCdro dec.w &CPWM ;Un ciclo PWM menos para repetición

jnz TA00ISRFin3 ;Quedan? Sí, salir
mov.b #ETX, &EstadoTx ;...no. Transmitir trama de nuevo
mov.w #NPWMCUADRO, &CPWM ;Inicializar contador de PWM
mov.b &Leds, &BufTx ;Inicializar buffer de Tx

TA00ISRFin3 reti

.intvec TIMER0_A0_VECTOR, TA00ISR

.intvec RESET_VECTOR, main

CRITERIO DE CORRECCIÓN

• Main: 30% (Reloj: 3, Variables: 2, Puertos: 1, CCR: 3, TA: 1)
• ISR: 70%

