SISTEMAS BASADOS EN MICROPROCESADOR Segundo parcial 2025-2026

Apellidos:........ccceeeeeernnnee. SOLUCION......ooeccierre e csrer s s e ssessas s P1l |P2]

1.-

Duracion 2:00 horas

(2526C2 5/10) Considere el circuito de la figura. La tension directa de los leds es Vf=2V, por lo
que no es posible encender los dos leds simultaneamente con una tension de alimentacion de
3V. Explique y haga un programa en ensamblador del MSP430 que gestione por multitarea
cooperativa y en el modo de menor consumo el encendido/apagado de los leds en funcién de
los pulsadores. Inicialmente ambos leds estan apagados, pero el led activo es el L1 y el modo
de pulsacion. Cada vez que se pulsa S2, se cambia el led activo. En modo de pulsacién, cada
vez que se pulsa S1 se enciende el led activo y se apaga cuando se suelta. En modo de
conmutacion, cada pulsacion de S1 hace que se invierta el estado del led activo. Se cambia
de modo cuando se pulsa S2 estando S1 pulsado.

Nota: Considere los pulsadores libres de rebotes, el perro guardian desactivado, los puertos
desbloqueados vy la pila inicializada. Dispone de la libreria st .asm y la funcién cmp32.
3v. 3V 3V

P1.1
P1.2

MSP430 P1.0

SOLUCION

Dado que los pulsadores no tienen resistencia externa, hay que usar las internas. En este caso
debe ser de pull-down.

Los leds se controlan con una unica linea y se dispone de 3 estados: en modo entrada los dos
leds estan apagados; en modo salida se enciende L1 cuando se escribe un 0 y L2 si se escribe
un 1.

Como hay que actuar en los flancos, sera necesario detectarlos y, dado que no se dispone de
interrupciones, se codificara la tarea como una sencilla maquina de estados que guardara el
valor anterior de la tecla. Al tratarse de dos teclas, o bien se codifica una tarea con 4 estados,
o bien 2 tareas con 2 estados. La lectura de las teclas se hara con la periodicidad suficiente y
sin necesidad de gestionar los tiempos, puesto que son tareas interactivas. Se escoge 100Hz
como frecuencia del SystemTimer.

.cdecls C,LIST, "msp430ports.h"
.cdecls C,LIST,"st.h"

LEDSBIT .equ BITO
LEDSPORT .equ P1IN
S1BIT .equ BIT1
S1PORT .equ P1IN
S2BIT .equ BIT2
S2PORT .equ P1IN

FTECLA .equ 100

*** Frecuencia del System Timer **x*
FTA .equ 32768 ;Frecuencia del reloj del TA. Hz
FST .equ 100 ;Frecuencia del SystemTimer. Hz

CCRO .equ FTA/FST-1 ;Valor a programar en CCRO para stIni
PERIODO .equ FST/FTECLA ;Tiempo entre ejecuciones (TICs)

.bss Banderas, 1 ;Bit 0: Modo (0O:pulsacidén, 1l:conmutaciédn)
;Bit 1: Estado de pulsacidén de S1 (0: no pulsado)
;Bit 2: Estado de pulsacidén de S2 (0: no pulsado)

MODO .equ BITO ;Modo de las teclas

TECLAL .equ BIT1 ;Estado de la tecla 1

TECLA2 .equ BIT2 ;Estado de la tecla 2

; main vl
main ;Inicializar SystemTimer

mov.w #CCRO, rl2
call #stIni

;Inicializar procesos
call #Inicializa

superbucle call #TeclaSl ;Tarea que gestiona Sl
call #TeclaS2 ;Tarea que gestiona S2
bis.w #LPM3+GIE, sr ;Entrar en bajo consumo
Jjmp superbucle
.intvec RESET VECTOR, main
.text
; Inicializa v1.0

; Inicializar proceso

Inicializa clr.b &Banderas

;bic.b #LEDSBIT, &LEDSPORT+POUT ;L1 activo
;bic.b #LEDSBIT, &LEDSPORT+PDIR ; Pero apagado
;bic.b #S1BIT, &S1PORT+PDIR ;S1 como entrada
;bic.b #S2BIT, &S2PORT+PDIR ;S2 como entrada
bis.b #S1BIT, &S1PORT+PREN ;Habilitar resistencia
bic.b #S1BIT, &S1PORT+POUT ;...de pulldown
bis.b #S2BIT, &S2PORT+PREN ;Habilitar resistencia
bic.b #S2BIT, &S2PORT+POUT ;...de pulldown
ret
; Proceso de tecla S1 v1.0
TeclaS1 bit.b #TECLAl, &Banderas ;Estado anterior tecla. Pulsada?
jnz S1pPul ;...s1. Ver si flanco de bajada
;La tecla estaba suelta. Sigue suelta?
S1NoPul bit.b #S1BIT, &S1PORT+PIN ;...no. Pulsada ahora?
jz TeclaS1lFin ;...no. Salir
;Se acaba de pulsar S1. Conmutar led activo
jmp TeclaSlCnm ;Conmutar y guardar estado
;La tecla estaba pulsada. Sigue pulsada-?
S1Pul bit.b #S1BIT, &S1PORT+PIN ;Pulsada ahora?
jnz TeclaSlFin ;...si. Salir

;Se acaba de soltar S1. Conmutar led activo si modo conmutaciodn

bit.b #MODO, &Banderas

jnz TeclaSlFnc
TeclaS1Cnm xor.b #LEDSBIT, &LEDSPORT+PDIR
TeclaSlFnc xor.b #TECLAl, &Banderas
TeclaSlFin ret

TeclaS2 bit.b #TECLA2, &Banderas
jnz S2Pul

S2NoPul bit.b #S2BIT, &S2PORT+PIN
jz TeclaS2Fin

xor.b #LEDSBIT, &LEDSPORT+POUT
bit.b #S1BIT, &S1PORT+PIN

jz TeclaS2Fnc

xor.b #MODO, &Banderas

Jjmp TeclaS2Fnc

S2Pul bit.b #S2BIT, &S2PORT+PIN

jnz TeclaS2Fin
TeclaS2Fnc xor.b #TECLA2, &Banderas
TeclaS2Fin ret

CRITERIO DE CORRECCION

« Constantes: 10%
* Prinicipal: 10%
* Proceso S1: 40%
* Proceso S2: 40%

2.- (2324 C2 5/10) EI WS2812B es un modulo RGB inteligente que integra logica de
comunicaciones, tres controladores PWM, un led rojo, uno verde y otro azul dentro de cada
pixel, permitiendo iluminar individualmente con hasta 256 niveles de brillo cada led y dando
224=16,777.216 colores. Los pixeles se conectan en cascada usualmente en tiras o paneles,
usando un solo pin de datos; funcionan a 5V y son populares para proyectos de iluminacion
personalizados debido a su flexibilidad y capacidad de crear efectos visuales complejos.

470 DQUT; DIN ! :

P1.0 —AAA—(ED) i Codigo 0 L

+5V | +5V S S

Vee Codigo 1 : :

GND GND;GN - 3 I
1 . Tbase

La comunicacion se hace por una uUnica linea de datos. Se envian 24 bits por pixel, un byte por
color, empezando por el msb en el orden RGB (rojo, verde, azul). Cada pixel se queda con los
primeros 24 bits que le llegan y retransmite los demas, permitiendo que la informacioén llegue
al resto de leds de la tira. La transmision de un 0 consiste en poner la linea en alto durante
Tbase, Yy en bajo durante 2*Tbase. La transmisiéon de un 1 mantiene la linea en alto durante
2*Tbase, Y en bajo Tbase (ver figura). Ademas, un codigo de reset consiste en dejar la
linea a 0 durante al menos 50us. Hace que cada pixel actualice el color segun la informacion
recibida y que espere una nueva recepcion. Tbase=500ns.

Realice un programa en ensamblador del MSP430 que configure el puerto P1.0 en su funcion
primaria (TAQ.1) para controlar una tira de 64 pixeles WS2812B con la ayuda del TAO y por
intrerrupciones. El programa mantendra un vector llamado L.eds con la informacién de color
de los pixeles y los enviara por la linea cada 20ms (es decir, a 50 fps o frames per second).

Con objeto de que la CPU no se vea sobrecargada en exceso, aumente la frecuencia de la
misma a 16MHz. Minimice también el niumero de interrupciones del TAO configurandolo para

que genere los codigos a enviar por la linea usando el modo PWM (sélo una IRQ por bit en
lugar de 2). Al final de la secuencia de bits debera generar un codigo de reset para actualizar
los leds y dejarlos listos para el siguiente ciclo.

Minimice el consumo del sistema (optimice el cddigo, use los modos de bajo consumo,...).
Considere el perro guardian desactivado, los puertos desbloqueados y la pila inicializada.

SOLUCION

Al inicio se programa el DCO en 16MHz y se baja el divisor de MCLK DIVM=1 para que la
CPU vaya a 16MHz. No se toca DIVS, con lo que el SMCLK sube a 2MHz, para que su
periodo sea 1/2MHz=500ns, coincidiendo con el Thase.

El puerto se configura en modo salida con funcion primaria.

Se configurara el TAO con fuente SMCLK/1 en modo UP (para que funcione en modo PWM
con CCRO0=2. De esta forma, el TAO hara 3 ciclos antes de resetearse. Se jugara con el valor
de CCR1 para generar las distintas senales del protocolo: CCR1=0 para generar el ciclo de
reset; CCR1=1 para generar el bit 0 y CCR1=2 parar generar el bit 1. Se activaran las
interrupciones de CCRO para actualizar el ciclo de trabajo del ciclo siguiente. Se termina el
programa principal habilitando las interrupciones y entrando el modo LPM1 ya que se necesita
SMCLK activo. Todo lo demas, se hara por interrupciones.

Para gestionar las distintas fases del protocolo se usara la variable
EstadoTx=[ETX, ERESET, ECUADRO]. Inicialmente EstadoTx=ETX, BufferTx=Led[0],
CBit=8 Yy CLed=0.

Cuando EstadoTx=ETX, se procede a transmitir la trama almacenada en Leds que tiene un
tamafo 3*NUMPIXELS bytes. La variable CL.ed=[0, 3*NUMPIXELS-1] (contador de leds) se
usara para indicar cual es el byte que se esta transmitiendo. Dicho byte se guarda
temporalmente en BufferTx para ir serializandolo. La variable cBit=[1, 8] (contador de
bits) indica cuantos bits quedan por transmitir. Cuando se trasmiten todos los bits de la trama,
se pasa al estado ERESET.

Cuando EstadoTx=ERESET, se genera un silencio en la linea de 50us contando NRESET
ciclos de la sefial PWM con la ayuda de la variable CReset=[1,NRESET]. Una vez que se
termina el ciclo de reset, se pasa a esperar que se cumplan los ciclos necesarios hasta
completar 20ms, contados desde que se inici6 la trasmisiéon. Cuando esto ocurra, pasamos al
estado ECUADRO.

Cada vez que se pasa por la IRQ del CCRO se decrementa la variable
CPWM=[1,NCUADRO] para contar el numero de ciclos de PWM que van pasando. NCUADRO se
ha calculado para que sea igual a 20ms. Terminados los 20ms se pasa al estado ETX para
repetir las transmision de la trama.

.cdecls C,LIST, "msp430ports.h"
; Configuracidén de puertos —-——-———=—————————- -

WSBIT .equ BITO

WSPORT .equ P1IN

; Constantes de configuracidn

NPIXELS .equ 64

FMCLK .equ 16000000

TBASE .equ 500

TRESET .equ 50000

TCUADRO .equ 20000000

RESPWM .equ 3 Res d

; Constantes calculadgg --—-————————"—+"-—H—H—"—"—-"—>""—"—"—"—""""" """\~~~ —(—(—(—(—(—(—(—(—(—(—(—(—————
FSMCLK .equ 1000000000 /TBASE; Frec ICLK Hz
DIVSMCLK .equ FMCLK/FSMCLK ;Div

TBIT .equ RESPWM*TBASE

DIVTA .equ 1

FTA .equ FSMCLK/DIVTA

FPWM .equ FTA/RESPWM

CCRO .equ RESPWM-1

NRESET .equ TRESET/TBIT+1

NPWMCUADRO .equ
; Variables

TCUADRO/TBIT+1;Numero de ciclos PWM para un cuadro (por exceso)

bss Leds, 3*NPIXELS;Buffer de colores de pixels
bss cpwM, 2, 2 ;Contador de ciclos PWM
bss CLed, 2 ;Contador de colores actual [0..3*NPIXELS-1]
bss CBit, 1 ;Contador de bit en el color actual
bss CReset, 1 ;Contador de ciclos de PWM en reset
bss BufTx, 1 ;Buffer de Tx
bss EstadoTx, 1 ;Estado de Tx. 0:Tx trama; 1:Tx reset; 2:Tiemp cuadro
ETX .equ 0 ;Transmitiendo trama
ERESET .equ 1 ;Transmitiendo reset
ECUADRO equ 2 ;Esperando tiempo entre cuadros
; volid main (void); v1.0
main ;DCO a 16MHz. MCLK=DCO/1 y SMCLK=DCO/8.
mov.b #CSKEY H, &CSCTLO_H ;Desbloquear CS
mov.w #DCOFSEL 4, &CSCTL1 ; DCO=16MHz
bic.w #DIVM1|DIVMO, &CSCTL3 ;DIVM=1, MCLK=16MHz
clr.b &CSCTLO H ;Bloquear CS
;Inicializar variables
mov.w #NPWMCUADRO, &CPWM
mov.b #ETX, &EstadoTx
clr.w &CLed
mov.b #8, &CBit
mov.b &Leds, &BufTx
;TAO. Generacidédn de la senal PWM que contola el servo
;Puertos. P1.0 salida funcidén primaria
bis.b #WSBIT, &WSPORT+PDIR
bis.b #WSBIT, &WSPORT+PSELO
;CCRO. Fija frecuencia de PWM
mov.w #CCRO, &TAOCCRO
mov.w #CCIE, &TAOCCTLO ;IRQ tras cada bit
;CCR1. PWM en modo Reset/Set (PWM Positivo). Inicialmente Tx reset
mov.w #OUTMOD_ 0, &TAOCCTL1 ;Salida a 0 por defecto
mov.w #0, &TAOCCR1 ;DC=0 para primer bit fake
mov.w #OUTMOD 7, &TAOCCTL1 ; PWM positivo
;TAO, en modo UP con fuente SMCLK y divisor 1
mov.w #TASSELAisMCLKIIDgil|MC47UP|TACLR, &TAOCTL
bis.w #GIE|LPM1, sr ;Entrar en bajo consumo

; TAOLISR

’

; Subrutina de servicio de la IRQ de CCRO de TAO. Genera la salida a los pixeles

’

TAOOISR cmp.b #ETX, &EstadoTx ;Transmitiendo trama?
jeqg TxTrama ;...81. Ir a seccidén de transmisidn
cmp.b #ECUADRO, &EstadoTx ;...no. Esperando siguiente cuadro?
jeqg TAOOISRCdro ;...s1. Contarlo
TxReset dec.w &CReset ;...no. Contabillizar ciclo PWM en reset
jnz TAOOISRCdro ;Quedan ciclos? Si, salir
mov.b #ECUADRO, &EstadoTx ;...no. Esperar hasta nuevo ciclo de tx
jmp TAOOISRCdro ;Salir
TxTrama push.w rl2 ;Salvar resgistros
mov.w #1, rl2 ;R12=1 (DC de valor légico 0 por defecto)
rla.b &BufTx ;C=Siguiente bit a Tx
adc.w rl2 ;Actualizar ciclo trabajo PWM
mov.w rl2, &TAOCCR1 ;Preparado para siguiente bit
dec.w &CBit ;Contabilizar bit. Byte terminado?
Jnz TAOOISRFTx ;...no. Salir
mov.b #8, &CBit ;...s1. Quedan 8 bits del siguiente color
mov.w &CLed, rl2 ;R12=contador de color
inc.w rl2 ;Siguiente color
cmp . w #3*NPIXELS, rl2 ;Quedan?
jlo TAOOISRResF ;...si. Salir

7o .

.no. Transmitir pulso de reset

TAOOISRRes

TAOOISRResF

TAOOISRFTx
TAOOISRCdro

TAOOISRFin3

e Main:
 |SR:

mov.
mov.
clr.
clr.
mov.
mov.
pop.
dec.
Jnz

mov.
mov.
mov.
reti

s =5 0= == 00

o = O

30% (Reloj: 3, Variables: 2, Puertos: 1, CCR: 3, TA: 1)

&EstadoTx
&CReset

#ERESET,
#NRESET,
&TAOCCR1
rl2

Leds (rl2),
rl2, &CLed
rl2

&CPWM
TAOOISRFin3
#ETX, &EstadoTx
#NPWMCUADRO, &CPWM
&Leds, &BufTx

&BUfTX

;Transmitir pulso de reset
;Inicializar contador de reset

;DC=0 para trama de reset
;Ini contador de colores

(sig ciclo)

;Siguiente color al buffer
;Contador de led a memoria

;Recuperar resgistros

;Un ciclo PWM menos para repeticidn

;Quedan? Si, salir

;. ..N0.

Transmitir trama de nuevo

;Inicializar contador de PWM

;Inicializar buffer de Tx

.intvec TIMERO AO VECTOR, TAQOISR
.intvec RESET VECTOR, main

CRITERIO DE CORRECCION

70%

