
Departamento de

Tecnología Electrónica

Computer Networks

Grado en Ingeniería Informática

Departamento de

Tecnología Electrónica

Computer Networks
Lesson 3

The Transport Layer

Application

Transport

Network

Link

Physical

Hardware

Software

Operative
system

Programs

Lesson 3: The Transport Layer

Objectives
• Understand the principles

behind transportation level
services:

• Multiplexing/demultiplexing
• Reliable data transfer
• Flow control

• Know the transport protocols
used on the Internet:

• UDP: non-connection-oriented
transport

• TCP: Connection-Oriented
Transport

Content
1. Transportation Level Services

2. Multiplexing and
demultiplexing

3. No conexion transport: UDP

4. Principles of reliable transfer

5. Connection-oriented
transport: TCP
• TCP segment structure
• Reliable data transfer
• Flow control
• Connection management

Transport Layer Services
Sockets

A-PDU

T-UD T-PDU

T-ICI

T-ICI
T-SDU

T-PCI

Transport

Application
T-SAP

T-IDU

Sender
A-PDU

T-UD T-PDU

T-ICI

T-ICI
T-SDU

T-PCI

Transport

Aplication
T-SAP

T-IDU

Receiver

… …

Internet

Transportat Layer Services
Internet Transport Protocols

• TCP: Reliable and in-order
data delivery service
• Flow control
• Congestion control
• Establishing the connection

•UDP: Unreliable data
delivery service without
order guarantee.

• Simple protocol

• Services not available:
• Guaranteed delay
• Guaranteed bandwidth

• both tcp and udp use ip
services

• Protocol that provides a
best-effort service

Transporte 3-6

Red doméstica

Red empresarial

Mobile network

Global ISP

Regional ISP

Transport Layer Services
Transport vs. Network

• Network layer: provides a logical communication service
between end computers(hosts)

• It allows (thanks to IP addresses) to identify a final system on the Internet.

• It is a service similar to the postal service that allows you to send a letter to
a house (address).

• Transport layer: extends the network layer service to provide a
logical communication service between application processes.

• It allows different processes in the same end system to use the same
network level thanks to the ports (this is known as transport layer
multiplexing and demultiplexing).
• It is achieved using the service provided by the network layer, to, from it, build an

"improved" service.

Lesson 3: The Transport Layer

Objectives
• Understand the principles

behind transportation level
services:

• Multiplexing/demultiplexing
• Reliable data transfer
• Flow control

• Know the transport protocols
used on the Internet:

• UDP: non-connection-oriented
transport

• TCP: Connection-Oriented
Transport

Content
1. Transportation Level Services

2. Multiplexing and
demultiplexing

3. No conexion transport: UDP

4. Principles of reliable transfer

5. Connection-oriented
transport: TCP
• TCP segment structure
• Reliable data transfer
• Flow control
• Connection management

Multiplexing and Demultiplexion

Multiplexing when sending

Collect data from multiple sockets,
create the segments (T_PDU) by

adding header information (T_PCI)
that will be used later when

demultiplexing.

Demultiplexion upon receipt

Deliver in the correct socket the
content (T_UD) of the segments
(T_PDU) received, thanks to the

information in the header (T_PCI).

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

End system 1 End system 2 End system 3

= process= socket

Multiplexing and Demultiplexing
Operation

• The network layer receives IP datagrams
(N_PDU)
• Each N_PDU has a source IP address and a

destination IP address in its header (N_PCI).
• Each N_PDU encapsulates a segment

(T_PDU)1.

• Transport layer receives segments (T_PDU)
• Each T_PDU has in its T_PCI
• a source port number and
• a destination port number.
• Each T_PDU encapsulates user, application-

tier (T_UD) data.
• On the destination host, IP addresses and

port numbers are used to deliver the T_UD
of the T_PDU to the appropriate socket.

Source port number Destination port number

32 bits

T_UD:
Level data

of application
(message)

Other fields of
the header (T_PCI)

T_PDU format
(common to TCP and UDP)

1 True if there is no fragmentation

Multiplexing and Demultiplexing
Not connection (UDP)

P3

Server
IP: C

P2

Client
IP: A

SP: 6428

DP: 9157

SP: 9157

DP: 6428 Client
IP: B

P1P1

SP: 6428

DP: 5775

SP: 5775

DP: 6428

The Source IP and Source Port will allow the P3
process to identify the source process (P1 or P2)
and return a message to it.

SP = Source Port Number
DP = Destination Port Number

Multiplexing and Demultiplexing
Connection-oriented (TCP)

• A TCP connection is identified by a 4-
tuple:
• Local IP address

• Local Port No.

• Remote IP Address

• Remote Port No.

• On the destination host, the 4 values
(present in the N_PCI and T_PCI) are
used to get the user data of the T_PDU
to the appropriate TCP socket.

•

• a server application can have
multiple tcp connections running
simultaneously.
• Each connection is identified by its

own 4-tuple

• a web server has a different
tcp connection for each client
that connects.

• With non-persistent HTTP, each
request from the same client will go
for a different TCP connection.

Transporte 3-12

Multiplexing and Demultiplexing
Web server with multiple processes

3-13

P1

client IP: A

P1P2P4

server
IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P5 P6 P3

IP-D: C

IP-S: A

IP-D: C

IP-S: B

SP: 5775

DP: 80

IP-D: C

IP-O: B

client
IP: B

SP = Source Port Number
DP = Destination Port Number
IP-S = Source IP Dir.
IP-D = Destination IP Dir.

It is not a problem that
two client processes
use the same source

port

It is not a problem
that two client

processes use the
same source IP

Lesson 3: The Transport Layer

Objectives
• Understand the principles

behind transportation level
services:

• Multiplexing/demultiplexing
• Reliable data transfer
• Flow control

• Know the transport protocols
used on the Internet:

• UDP: non-connection-oriented
transport

• TCP: Connection-Oriented
Transport

Content
1. Transportation Level Services

2. Multiplexing and
demultiplexing

3. No conexion transport: UDP

4. Principles of reliable transfer

5. Connection-oriented
transport: TCP
• TCP segment structure
• Reliable data transfer
• Flow control
• Connection management

Non-conection oriented transport: UDP
UDP = User Datagram Protocol [RFC 768]
• It is a very simple Internet transport protocol.

• Offers a best effort service:

• The T_PDU can be "lost" and not reach their destination.

• If the T_PDU arrive in a different order, the user data contained in
them would be delivered in a different order to the Application Level.

• Non-conection:

• There is no pre-agreement phase between the UDP sender and
receiver.

• Each T_PDU is treated independently of the others.

Transporte 3-15

User Datagram Protocol

• Often used by media
streaming applications

• Loss tolerant

• Bandwidth sensitive

• Other uses of UDP
• DNS

• SNMP

• Reliable transfer over UDP?
It is possible if we add
reliability to the
application layer

• Application-specific error
recovery!

32 bits

length checksum

The header (T_PCI) only has 4 fields.
The length is in bytes and is that of the full
T_PDU, with header.

Source port number Destination port number

Level data
of application

(message)

T_PDU format
of UDP

T_PCI

T_UD

UDP
Checksum

The sender:

Treats the T_PDU as a sequence of
16-bit integers.

Simplifying a bit, we can say that it
adds all the 16-bit integers that
make up the T_PDU and then
calculates the complement to 1.

Place the calculated value in the
checksum field of the header
(T_PCI).

The receiver:

It calculates the checksum, again, in
the same way that the issuer did,
on the T_PDU received.

Checks whether the calculated
checksum is identical to the value
of the checksum field of the
received T_PDU.

NO: Error detected!

YES → No error is detected, but ...
Could there be an error?

.Objective: to detect "errors" (e.g., "changed" bits) in a transmitted T_PDU

Lesson 3: The Transport Layer

Objectives
• Understand the principles

behind transportation level
services:

• Multiplexing/demultiplexing
• Reliable data transfer
• Flow control

• Know the transport protocols
used on the Internet:

• UDP: non-connection-oriented
transport

• TCP: Connection-Oriented
Transport

Content
1. Transportation Level Services

2. Multiplexing and
demultiplexing

3. No conexion transport: UDP

4. Principles of reliable transfer

5. Connection-oriented
transport: TCP
• TCP segment structure
• Reliable data transfer
• Flow control
• Connection management

R.T. is important at the application, transport, and data link layers.

It's on the list of the 10 most important topics about networking!

Principles of reliable transfer

Why is R.T. necessary?

Wrong PDUs

In the transmissions over the links there is
interference that alters the transmitted bits.

Lost PDUs

Packet queues, when saturated, begin to
discard incoming packets.

Duplicate PDUs

Certain communication problems cause
PDUs that have already been received to be
retransmitted.

How are these problems detected?

Wrong PDUs

Using error checking mechanisms (included
in the PCI).

Algorithms similar to checksum.

The most complex and reliable algorithms
are used at the link level.

Lost and duplicated PDUs

Adding "something" to the header (PCI) of
each PDU that allows it to be distinguished
from the rest of the sent PDUs.

How are these problems solved?

Retransmissions

The transmitter re-transmits an exact copy
of the PDU that had problems.

Principles of reliable transfer
Communication between peer entities

General case of communication between peer entities of the same level:
• When communicating with your peer entity, one entity sends the other a header PDU

(PCI) and, in general, user data (UD).
• Headers (PCI) contain protocol control information.
• In general, both entities transmit and receive user data.
• Bidirectional transfer of user data between peer entities.

Simplification of the general case of communication between peer entities:

It makes easier the explanation of the principles of reliable transfer.

We will assume a one-way transfer of user data.

• One of the peer entities of the level will be called transmitter (Tx).

• We will call the other entity a receiver (Rx).

• The Tx transmits PDUs with PCI and UD (the UDs come from their upper level).

• The Rx receives PDUs with PCI and UD (the UD will pass them to their higher
level).

• The Rx transmits PDUs that will only have PCI (no UD, only control info).

• The Tx receives PDUs that will only have PCI.

• Bidirectional transfer of protocol control information.

It is a mistake to think that the Tx does not send control information because it only sends PDUs
of data.

Data PDUs also carry control information.

Note

Principles of reliable transfer
Types of PDUs

• Data PDU

• Only the Tx sends them

• Contains user data (UD)

• Contains protocol control information (on the PCI)

• Control PDU

• They are only sent by the Rx

• Contains no user data (UD)

• Only contains protocol control information (in the PCI)

the PCI information that is used to identify a particular data PDU
is called a sequence number.

Note

Principles of reliable transfer
What does the header (PCI) contain?

• The PCI of a data PDU contains information that enables:
• Let the Rx detect if that data PDU has errors.

• Identify that data PDU and distinguish it from other PDU sent by the Tx.

• The PCI of a control PDU contains information that allows:
• Let the Tx detect if that control PDU has errors.

• That the Rx identifies a certain data PDU, and informs about that Data PDU

• has been received correctly by the Rx.

• ACK, acknowledgement

• has not been received correctly by the Rx.

• NAK, NACK, negative acknowledgement,

Principles of reliable transfer
Basic operation

Transmitter (Tx):

• The Tx entity of a certain level,
builds a data PDU with UD and
PCI and transmits it to the Rx.

• Now, the Tx waits for a while,
known as time_out, to receive an
Rx control PDU

• with an ACK means the data
PDU arrived correctly to the Rx.

• Tx doesn't do anything else.

• with a NACK, that the data PDU
arrived with errors to the Rx.

• Tx resend the PDU.

• If the time_out expires before the
Rx control PDU arrives, then

• Tx resend the PDU.

Receptor (Rx):

• When receiving a data PDU the Rx
entity of a certain level:
• If the data PDU arrived correctly,

it is mandatory for the Rx to send
the TX an ACK type control PDU.

• If the data PDU arrived with
errors, it is optional for the Rx to
send the TX a control PDU of type
NACK.

•

P: How much should the time_out
be, at a minimum?

P: Does the Rx always deliver the
UD of a data PDU that arrives
correctly to the top level?

Tx Rx

Time

No errors

dtransPDU

dtransACK

PCI

Tx Rx

X

Time_out

Time_out

With errors

Lost PDU

Erroneous
PDU

Principles of reliable transfer
Example 1: loss and error

• Transmitter sends only one PDU with UD and does not
send the next one until successful transmission.

• Receiver only sends ACK control PDU.

Tx Rx

time

X

Time_out

With errors

Principles of reliable transfer
Example 2: Negative acknowledgement (NACK)

• Idem example 1.

• Receiver also sends NACK control PDU.

• No erros.

• same previous behavior

Principles of reliable transfer
Protocols with Pipeline - Concept

With pipeline, the Tx can have multiple PDUs in transit ("in
flight") pending confirmation (ACK), greatly improving efficiency.

The sequence numbers used in the PCI must be of sufficient range to
distinguish all PDUs in transit.

Buffers are required in the Tx and sometimes in Rx.

Stop and wait Pipeline

PDU PDU

ACK

Principles of reliable transfer
Protocols with Pipeline - Improving Efficiency

Send bit 1 of 1st PDU, t = 0

Tx Rx

RTT

Last bit PDU send, t=L/R

First bit of 1st PDU arrives

Last bit arrives 1st PDU, ACK shipping

ACK received, next send PDU, the
4th, t = RTT + L / R

Last bit arrives 2nd PDU, ACK shipping
Last bit arrives 3rd PDU, ACK shipping

U
transmisor =

0,024

30,008
= 0,0008

3 * L / R

RTT + L / R
=

Having up to 3 PDUs "in
flight" multiplies efficiency

by a factor of 3

Lesson 3: The Transport Layer

Objectives
• Understand the principles

behind transportation level
services:

• Multiplexing/demultiplexing
• Reliable data transfer
• Flow control

• Know the transport protocols
used on the Internet:

• UDP: non-connection-oriented
transport

• TCP: Connection-Oriented
Transport

Content
1. Transportation Level Services

2. Multiplexing and
demultiplexing

3. No conexion transport: UDP

4. Principles of reliable transfer

5. Connection-oriented
transport: TCP
• TCP segment structure
• Reliable data transfer
• Flow control
• Connection management

Connection-oriented transport: TCP
TCP Segment Structure – Overview

• RFCs: 793, 1122, 1323, 2018, 2581

• Point to point:
• One sender, one receiver (non-multicast)

• Byte flow, reliable and in order:

• No "border" between messages (A_PDUs)

• Use "pipeline":
• TCP flow control sets the size of the window (max. no data "in flight")

• Buffers: Btx y Brx

• Full-Duplex:
• Data flows through a connection bidirectionally.

• MSS: Maximum Segment Size (actually, of the T_UD). It is negotiated when the connection
starts.

• Connection-oriented:
• Agreement prior to sending data. The client takes the initiative by sending a control message, which the

server should be waiting for.

• Flow control

socketsocket
TCP

Send buffer

Application
writes data

TCP
Receive buffer

Application
reads data

TCP_PDU

Connection-oriented transport: TCP
TCP Segment Structure – The TCP_PDU

Nº port source. Port no. dest.

32 bits

Application-level data
(variable length)

Sequence number

ACK Number

Rx window

Ugent data pointerchecksum

FSRPAU
Long.
Hea.

Not used

Options (variable length)

URG: urgent data
(not usually used)

ACK: indicates that
the ACK number is

valid

PSH: "pushes" data now
(not usually used)

RST, SYN, FIN

The
number of
bytes that
the Rx is
willing to
accept

Count bytes
of data, not
PDUs

Internet
checksum

(as in UDP)

T_PCI

T_UD

Header Length (T_PCI) in
32-bit words (4 bytes)

F

Connection-oriented transport: TCP
TCP Segment Structure – Sequence Number and ACK

Sequence number:

It is the number assigned, within the byte stream, to the first byte of tcp
segment data that is sent to the other peer entity.

The initial value of this field is decided randomly by each peer entity at the
start of the connection.

It increases as segments containing UD are sent.

ACK No.:

It is used to indicate the sequence number of the byte that is expected to be
received next by the other even entity.

All previous bytes are recognized (cumulative ACK).

Q: How does the receiver treat out of order segments?

A: The TCP specification leaves it to the discretion of the implementer.

Connection-oriented transport: TCP
TCP Segment Structure – Sequence Number and ACK – Example

TCP Host A TCP Host B
Btx contains “DIEZ BYTES”

time

Simple scenario

• TCP sends the "overlay" ACK on its data PDU ("piggybacking"), as it appears on the second
segment that both hosts have sent.

Notes

Btx Contains “TRECE OCTETOS”

Brx Contains “DIEZ BYTES”

Empty Btx

Brx Contains “TRECE OCTETOS”

Empty Btx

42+10

79+13

#seq A = 42 #seq B = 79

No data

Lesson 3: The Transport Layer

Objectives
• Understand the principles

behind transportation level
services:

• Multiplexing/demultiplexing
• Reliable data transfer
• Flow control

• Know the transport protocols
used on the Internet:

• UDP: non-connection-oriented
transport

• TCP: Connection-Oriented
Transport

Content
1. Transportation Level Services

2. Multiplexing and
demultiplexing

3. No conexion transport: UDP

4. Principles of reliable transfer

5. Connection-oriented
transport: TCP
• TCP segment structure
• Reliable data transfer
• Flow control
• Connection management

Connection-oriented transport: TCP
Reliable Data Transfer – Events Handled by the TCP Sender (simplified)

Application data arrives (top level):
• Creates a segment with an appropriate sequence number and passes it to

the lower level (IP).
• The sequence number of the segment is the sequence number, within the

byte stream, of the first byte of data in the segment.
• Start the timer, if it was not already running (it would be running if there

was previous data not recognized).
• The timer is set to expire after Time_out seconds.

Timer expires (time_out):

It broadcasts the segment that has caused the time_out.

Reboot the timer.

An ACK arrives...

... for data for which an ACK had not yet been received:

Updates the indicator that points to the "oldest pending ACK data" and
stops the timer.

Start the timer only if there is still "in flight" pending data from ACK.

Transporte 3-34

TCP estimates the RTT to know what value to use in time_out

What value should TCP use as a time_out?

Must be somewhat larger than RTT

• But RTT changes over time...

• A very small value produces premature time_out and unnecessary retransmissions.

• Too large a value causes you to react too late to the loss of a segment.

TCP follows an algorithm to estimate, in real time, the RTT that exists at each moment
and then calculates the timeout

Transporte 3-35

Connection-oriented transport: TCP
Reliable data transfer – Scenarios with relays (I)

Host A

Premature
time_out
scenario

Host BHost A

lost

Scenario
ACK lost

Host B

time time
Ti

m
e_

o
u

t
Se

c=
9

2

Ti
m

e_
o

u
t

Se
c=

92

Expires Expires

Duplicates arrive but TCP only goes up one to the Application
level.

Host A Host B

Scenario
ACK

cumulative
time

ACK lost

Connection-oriented transport: TCP
Reliable data transfer – Scenarios with relays (II)

Ti
m

e_
o

u
t

Se
c=

9
2

Does not
expire

Ti
m

e_
o

u
t

Se
c=

9
2

The timer with the "recommended"
duration would have expired before the
arrival of ACK=120.
The transmitter may sometimes use a
time_out that lasts longer than
recommended which makes it easy for
cumulative ACKs to occur.

Recognizes the first
segment and the
second segment

Connection-oriented transport: TCP
Reliable data transfer – Fast retransmission (II)

• The time_out has a relatively long duration:
• It takes a long time for a lost segment to be broadcast.

Detect lost segments thanks to duplicate ACKs.
The sender often sends many segments in a row, very “close".

If a segment is lost, many duplicate ACKs will most likely arrive.

If the sender receives three duplicate ACKs for the same data,
it assumes that the segment whose data follows the data
being recognized has been lost:
Fast retransmission: Forward that segment that is supposed to be lost
even though its timer has not yet expired.

TCP does not use NAKs, so the receiver cannot warn that a segment is missing.

Note

Host A Host B

time

Ti
m

e_
o

u
t

2n
d

 s
e

gm
e

n
t

Does not
expire

Connection-oriented transport: TCP
Reliable data transfer – Fast retransmission

Forward before
timeout expires

Lesson 3: The Transport Layer

Objectives
• Understand the principles

behind transportation level
services:

• Multiplexing/demultiplexing
• Reliable data transfer
• Flow control

• Know the transport protocols
used on the Internet:

• UDP: non-connection-oriented
transport

• TCP: Connection-Oriented
Transport

Content
1. Transportation Level Services

2. Multiplexing and
demultiplexing

3. No conexion transport: UDP

4. Principles of reliable transfer

5. Connection-oriented
transport: TCP
• TCP segment structure
• Reliable data transfer
• Flow control
• Connection management

Connection-oriented transport: TCP
Flow control

• The receiving side of a TCP connection has a
receive buffer where data arriving from the
lower level accumulates.

•

• Speed adjustment service:

• It makes the transmission rate at the other end adjust to the rate at which the
receiving application "consumes" the data that arrives.

The application process may
be very slow reading from the
TCP receive buffer.

Flow control

Getting the sender not to
overflow the receiver buffer
because of transmitting too

much data, too fast.

ReceptionBuffer

ReceptionWindow

Free space
in the TCP

Buffer

Data in the TCP Buffer,
waiting to be read by the

application

IP Data
Towards the
application

process

It varies in size

Fixed size

Connection-oriented transport: TCP
Flow Control – Operation (I)

3-42

• We will assume that the TCP receiver discards the segments it receives
disordered, so those do not take up space in the Rx buffer.

• Free space in the receive buffer:
ReceptionWindow = ReceptionBuffer – (LastByteReceived – LastByteRead)

ReceptionBuffer

ReceptionWindow

Free space
in the TCP

Buffer

Data in the TCP Buffer,
waiting to be read by the

application

IP Data
Towards the
application

process

It varies in size

Fixed size

This difference indicates what is "occupied"

Connection-oriented transport: TCP
Flow Control – Operation (II)

• The receiver informs the sender of the free space in the buffer thanks to
the ReceptionWindow field present in the header (T_PCI) of the
segments (T_PDU) it sends.

• The sender limits the number of pending ACK "in-flight" data so that it
fits in the Perception Window.

• This ensures that the ReceptionBuffer never overflows.

ReceptionBuffer

ReceptionWindow

Free space
in the TCP

Buffer

Data in the TCP Buffer,
waiting to be read by the

application

IP Data
Towards the
application

process

Fixed size

It varies in size

Connection-oriented transport: TCP
Flow Control – Operation (III)

• The value of the
ReceptionWindow field in
the T_PCI is related to the
value of the ACK number
field in the T_PCI.

• When the sender receives
a segment, it observes the
value of the ACK number
field and the value of the
ReceptionWindow field to
know the range of
sequence numbers
corresponding to the data
that it is authorized to
have "in flight", pending
confirmation:

Transporte 3-44Desde ACK number hasta (ACK number + ReceptionWindow – 1)

Nº port source. Port no. dest.

Application-level data
(variable length)

Sequence number

ACK Number

Rx window

Urg. Data pointerchecksum

FSRPAU
Head.
lenght

Not
used

Options (variable length)

F

Lesson 3: The Transport Layer

Objectives
• Understand the principles

behind transportation level
services:

• Multiplexing/demultiplexing
• Reliable data transfer
• Flow control

• Know the transport protocols
used on the Internet:

• UDP: non-connection-oriented
transport

• TCP: Connection-Oriented
Transport

Content
1. Transportation Level Services

2. Multiplexing and
demultiplexing

3. No conexion transport: UDP

4. Principles of reliable transfer

5. Connection-oriented
transport: TCP
• TCP segment structure
• Reliable data transfer
• Flow control
• Connection management

Connection-oriented transport: TCP
TCP Connection Management: Establishment

Remember: The TCP client and server establish the connection before
exchanging segments that carry user data.

During this connection establishment phase both must initialize the tcp
variables:

• Sequence numbers to use.

• Transmission and reception buffers (both on client and server).

• Flow control information (ex: ReceptionWindow).

• etc.

The client is the one who takes the initiative to establish the connection through
a socket and the server is always "listening" to receive the connection start from
the client.

Client Server

Agreement process in three phases

timetime

Connection-oriented transport: TCP
TCP Connection Management: Establishment

Accepts
connection

New socket

Connection
Established

Server
can
send
data

Client
can

send
data

Connection-oriented transport: TCP
Connection Management: Closing the Connection TCP

• An FIN segment is one that has
activated the FIN bit, which for
all purposes is considered as the
last byte of the data flow of the
TCP connection.

• The TCP entity that sends a FIN
segment can no longer send
data, but can continue to
receive it.

Ti
m

e
o

u
t

client server

Process on client requests
connection shutdown

Process on server
requests connection
shutdown

Connection closed

Connection closed

timetime

Both client and server can
initiate the connection
closing

Nota

Contenidos

Tema 1: Redes de Computadores e Internet

Tema 2: Capa de Aplicación

Tema 3: Capa de Transporte

Tema 4: Capa de Red

Tema 5: Capa de Enlace de Datos

Estas transparencias han sido elaboradas a partir de material con copyright que Pearson
pone a disposición del profesorado, a partir del libro:
Jim Kurose, Keith Ross (2010). Computer Networking: A Top Down Approach, 5th edition,
Ed. Pearson.
Algunas actualizaciones pertenecen a la última edición:
Jim Kurose, Keith Ross (2017). Redes de Computadoras: Un enfoque descendente, 7ª
edición, Ed. Pearson.

Departamento de

Tecnología Electrónica

Redes de Computadores
Tema 3

La Capa de Transporte

EJERCICIOS

Problem 1

• Assume that client A initiates a TCP connection to a Web
server named S. more or less simultaneously client B also
initiates a TCP connection to S.

• Enter possible source and destination port numbers for:
• Segments sent from A to S

• Segments sent from B to S

• Segments sent from S to A

• Segments sent from S to B

If A and B are on different hosts, could the source port
number of segments from A to S be the same as that of
segments from B to S?

What if client processes A and B are on the same host?

Transporte – Problemas 3 - 1

Problem 2
Observe the connections that clients have initiated to the Web server, and
respond to the following:

a) What are the values of the source and destination ports on the segments
that flow from the server back to the client processes?

b) What are the IP addresses (source and destination) of the network layer
(N_PDU) datagrams that carry to those transport layer segments?

SP = Source Port Number
DP = Destination Port Number
IP-S = IP Source
IP-D = IP Destination

P1

Client
IP: A

P1P2P4

Web server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

IP-D: C
IP-S: A

IP-D: C

IP-S: B

PS: 5775
DP: 80

IP-D: C
IP-S: B

client
IP: B

Problem 3

We have seen that pipeline protocols improve efficiency
versus "stop and wait" protocols.

Suppose a Tx and an Rx a 1Gbps link, 30ms of RTT, with PDUs
of 1500 bytes and with zero header sizes (that is, a totally
negligible size compared to the other sizes).

How many data PDUs does the Tx have to be "in flight" for the
channel utilization rate to be 95%?

Problem 4

An application may prefer UDP as a transport protocol over
TCP, in order to have a greater degree of control over what
data is sent on the T_PDU and at what time.

• Explain why UDP gives your application more control over
what data is sent on the T_PDU.

• Explain why UDP gives your application more control over
when a T_PDU is sent.

Problem 5

Assume that a client application protocol wants to send only a
1000-byte PDU using the TCP protocol to a server application
that responds to it with 100 bytes.

Make a diagram with the flow of TCP_PDUs that will be
exchanged by labeling each of them with the active flags, the
value of the sequence number field, the value of the ACK
number field, and the number of bytes of TCP_UD it carries.
For each TCP_PDU exchanged, you must indicate the size in
bytes of the exchange. assume tcp has no options the initial
sequence number (nsi) of the client is 1000 and the initial
sequence number (nsi) of the server is 3000.

Problem 6
A large file (L bytes) is to be transferred from A to B over a TCP connection
on which the MSS has been set to 536 bytes. Calculate the maximum
value that L can have if we do not want the sequence numbers used in the
connection to start repeating.

Calculate the time it would take for a file of the L length you calculated
earlier to be transmitted, assuming that:

• A and B are connected by a 155Mbps link

• Each TCP segment is encapsulated in a single IP datagram and this in a single frame,
adding a total of 66 bytes of headers to the application-tier data.

• It can be sent at maximum rate, without danger of overflowing the receiver, so we
will not take into account flow control.

Problem 7

Assume that a client application protocol wants to send only a
100-byte PDU using the TCP to a server application that
responds to it with 1000 bytes.

Make a diagram with the flow of TCP_PDUs that will be
exchanged by labeling each of them with the active flags, the
value of the sequence number field, the value of the ACK
number field, and the number of bytes of TCP_UD it carries.
For each TCP_PDU exchanged, you must indicate the size in
bytes of the exchange. assume that tcp has no options the
initial sequence number (nsi) of the client is 0, the initial
sequence number (nsi) of the server is 0, and the sss number
is 536.

Problem 8
Hosts A and B are communicating over a TCP connection. Host B has
received from A all bytes up to byte 126 and A has received its ACKs.

Suppose A now sends B two segments in a row, the first 70 bytes of data
and the other 50 bytes.

The sequence number of the first segment is 127, the port of origin is 302
and the destination port number is 80.Suppose B sends an
acknowledgment every time a segment of A arrives.

• What Sequence No., Origin Port No, and Destination Port Number does
the second segment that sent A have?

• If the first segment reaches B before the second, what is the recognition
number, origin port number and destination port number of the ACK
that B will send through it?

Problem 8

c) If the network layer messes up the two segments of A, so that the
second one arrives first at B, what will be the recognition number
of the ACK that B will send as soon as it receives it?

d) Suppose that the two segments from A to B arrive in order, and
that the two ACKs sent by B…..
• The first one is lost and does not reach A

• The second comes after the time_out of the first segment has occurred in A.

e) Draw a time diagram with the two segments sent by A, the two
ACKs of B, and add the rest of the segments that are going to be
sent due to retransmissions and new ACKs. Assume that no more
segments will be lost. Enter data size, sequence number, and
recognition number.

