Circuitos electrónicos digitales

Universidad de Sevilla

10/11/2025 16:09:35

Tema 6

Unidades aritméticas y lógicas

Usted es libre de copiar, distribuir y comunicar públicamente la obra y de hacer obras derivadas siempre que se cite la fuente y se respeten las condiciones de la licencia "Attribution-Share alike de Creative Commons".

Texto completo de la licencia en:

http://creativecommons.org/licenses/by-sa/3.0/es

Introducción

- Los computadores pueden ejecutar operaciones aritméticas y lógicas.
- Una operación de cálculo en un computador puede ser realizado de dos formas:
 - Hardware: un circuito realiza completamente esa operación.
 - Software: un programa descompone esa operación en otras más elementales que son realizadas mediante hardware.

Introducción

- Hardware de cálculo numérico en los procesadores:
 - Todos los procesadores disponen de los componentes necesarios para sumar y restar enteros por hardware.
 - Algunos pueden realizar por hardware otras operaciones enteras más complejas como multiplicación o división entera.
 - Algunos incluso pueden realizar por hardware operaciones con números no enteros, algunas tan complejas como exponenciales, logaritmos o funciones trigonométricas.

Introducción

La aritmética de un computador digital tiene ciertas peculiaridades:

- La base del sistema de numeración suele ser 2 (binaria).
- El código empleado para representar conjuntamente enteros mayores y menores que cero (notación con signo) normalmente no es signo-magnitud.
- A menudo, el número de bits disponible para representar un número tiene una cota predeterminada, lo que limita la precisión y el rango de valores representables.

Suma aritmética

Suma aritmética

```
      0 1 1 0 0
      Acarreo (carry)

      1 0 0 1 1 0
      Sumando 1

      + 1 1 0 1
      Sumando 2

      1 1 0 0 1 1
      Suma
```


Resta

Resta

```
1 0 0 1 1 0 Minuendo
- 1 1 0 1 Sustraendo
1 1 0 0 1 Préstamo (borrow)
0 1 1 0 0 1 Resta
```

Multiplicación

1 0 0 1 1 0 X 1 1 0 1

Multiplicación (algoritmo de sumas y desplazamientos, no óptimo)

			_	0			_	Multiplicador
		X		1	Т_	U	_ <u>_</u>	Multiplicador
		1	0	0	1	1	0	
	0	0	0	0	0	0		
1	0	0	1	1	0			
1 0	0	1	1	0				
1 1	1	1	0	1	1	1	0	Multiplicación

División

1 0 0 1 1 0

1 1 0 1

División (algoritmo no óptimo)

Resto

Operador módulo: definición

- Sea $x \in \mathbb{Z}$ y sea $n \in \mathbb{N}$, se define $x \mod n$ como el número $r \in \mathbb{Z}_n$ tal que x-r es múltiplo de n.
- Es fácil demostrar que x mod n es único.
- Ejemplos:

 $23 \mod 5 = 3$

 $-30 \mod 8 = 2$

 $4 \mod 20 = 4$

 $-4 \mod 20 = 16$

• El operador módulo suele tener la menor precedencia, es decir, a+b mod m=(a+b) mod m, a-b mod m=(a-b) mod m, a×b mod m=(a×b) mod m.

Operador módulo: propiedades

- Si x≥0, x mod n es el resto de dividir x entre n.
- Si x es múltiplo de n, x mod n=0.
- Si $x \in \mathbb{Z}_n$, $x \mod n = x$.
- (f+g) mod n=[(f mod n)+g] mod n=[f+(g mod n)] mod n=
 =[(f mod n)+(g mod n)] mod n
- (f-g) mod n=[(f mod n)-g] mod n=[f-(g mod n)] mod n=
 =[(f mod n)-(g mod n)] mod n
- (f×g) mod n=[(f mod n)×g] mod n=[f×(g mod n)] mod n==[(f mod n)×(g mod n)] mod n

Operador módulo: ejercicios

- Calcule 83141592 mod n para los siguientes valores de n: 10^9 , 10^8 , 10^7 , 10^6 , 10^5 , 10^4 , 10^3 , 10^2 y 10^1 .
- Represente el número 101100110_{(2 mod n} en base 2 para los siguientes valores de n: 2¹⁰, 2⁹, 2⁸, 2⁷, 2⁶, 2⁵, 2⁴, 2³, 2² y 2¹.
- Represente el número 2143157₍₈ mod n en base 8 para los siguientes valores de n: 8⁸, 8⁷, 8⁶, 8⁵, 8⁴, 8³, 8² y 8¹.
- Calcule 236813×564157 mod 10.
- Represente en base 2 el número $111001101_{(2} \times 101100111_{(2)} \mod 2^2$.

notaciones con signo

Los códigos binarios para representar número enteros se dividen en dos tipos:

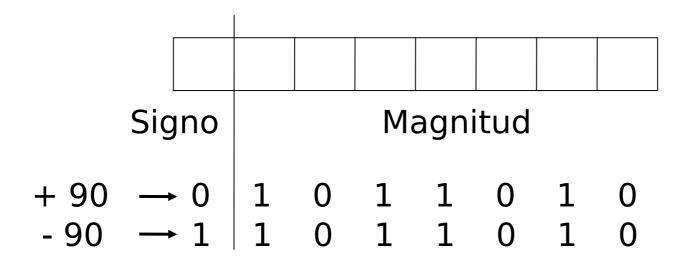
- Sin signo: No permiten representar valores menores que cero.
 - Base 2
 - Gray
- Con signo: Permiten representar valores menores que cero.
 - Notación Signo-Magnitud
 - Notación Complemento a 1
 - Notación Complemento a 2
 - Notación Exceso

notación signo-magnitud

- El número que representa una cadena de bits A en notación signo-magnitud lo notamos A_{(S-M}
- Con n bits los números representables son los enteros en el intervalo [-(2ⁿ⁻¹ - 1), 2ⁿ⁻¹ - 1] (un total de 2ⁿ - 1)
- Para representar un número X≥0 se toma una cadena A tal que A₍₂=X. Ejemplo: "01011010"_{(S-M}=90
- Para representar un número X≤0 se toma una cadena A tal que A₍₂=2ⁿ⁻¹+|X|. Ejemplo: "11011010"_{(S-M}=-90
- Cualquier cadena con los n-1 bits menos significativos iguales a 0 representa el número cero ("0000" y "1000" para n=4)

notación signo-magnitud

Cuando se representa un número con una cadena A en notación signo magnitud, al bit más significativo de A se le llama bit de signo ya que si vale cero entonces $A_{(S-M} \ge 0$ y si vale uno entonces $A_{(S-M} \le 0$. A los bits restantes se les denomina magnitud ya que en notación base 2 sin signo representan el valor absoluto de $A_{(S-M)}$



Sea A una cadena de n bits, el complemento a 1 de A, Ca1(A), es otra cadena de n bits tal que $A_{(2)}+Ca1(A)_{(2)}=2^{n}-1$

Propiedades de Ca1:

- Ca1(Ca1(A))=A
- Ca1(A) puede obtenerse complementando los bits de A, es decir, Ca1(A)=A
- Ejemplo: Ca1("01011010")="10100101"

- El número que representa una cadena de bits A en notación complemento a 1 lo notamos A_(Ca1)
- Con n bits los números representables son los enteros en el intervalo [-(2ⁿ⁻¹ - 1), 2ⁿ⁻¹ - 1] (un total de 2ⁿ - 1)
- Para representar un número X≥0 se toma una cadena A tal que A₍₂=X. Ejemplo: "01011010"_{(Ca1}=90
- Para representar un número X≤0 se toma una cadena A tal que Ca1(A)₍₂=|X|. Ejemplo: "10100101"_{(Ca1}=-90
- Cualquier cadena con todos los bits iguales representa el número cero ("0000" y "1111" para n=4)
- Al bit más significativo de A se le llama bit de signo ya que si vale 0 entonces A_{(Ca1}≥0 y si vale 1 entonces A_{(Ca1}≤0.

Sea A una cadena de n bits, el complemento a 2 de A, Ca2(A), es otra cadena de n bits tal que

$$Ca2(A)_{(2)} = (-A_{(2)}) \mod 2^n$$

Propiedades de Ca2:

- Ca2(Ca2(A))=A
- Si A₍₂=0 entonces Ca2(A)=A
- Si $A_{(2} \neq 0$ entonces $A_{(2} + Ca2(A)_{(2} = 2^n)$

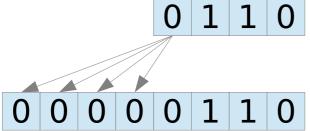
$$A_{(2}+Ca2(A)_{(2)} \mod 2^{n}=0$$

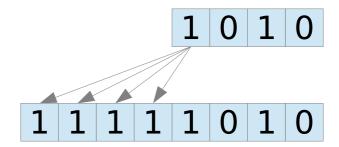
- $Ca2(A)_{(2} = \overline{A}_{(2} + 1 \mod 2^n)$
- Ca2(A) puede obtenerse complementando los bits a la izquierda del primer uno de A empezando por la derecha.

Ejemplo: Ca2("01011100")="10100100"

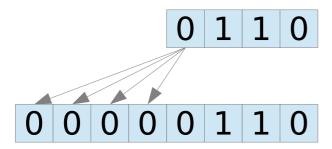
- El número que representa una cadena de bits A en notación complemento a 2 lo notamos A_{(Ca2}
- Con n bits los números representables son los enteros en el intervalo [-2ⁿ⁻¹, 2ⁿ⁻¹ – 1] (un total de 2ⁿ)
- Para representar un número X se toma una cadena A tal que A₍₂=X mod 2ⁿ. Ejemplo: "10100110"_{(Ca2}=-90
- Propiedad: $A_{(Ca2}=2^{0}A_{0}+2^{1}A_{1}+2^{2}A_{2}+...+2^{n-2}A_{n-2}-2^{n-1}A_{n-1}$
- Propiedad: Si A_{(Ca2}≠-2ⁿ⁻¹ entonces Ca2(A)_{(Ca2}=-A_{(Ca2}
- Propiedad: $-A_{(Ca2} = \overline{A}_{(Ca2} + 1)$
- Sólo la cadena con todos los bits iguales a 0 representa el número cero ("0000" para n=4)
- Al bit más significativo de A se le llama bit de signo ya que si vale_0 entonces A_{(Ca2}≥0 y si vale 1 entonces A_{(Ca2}<0. Departamento de Tecnología Electrónica – Universidad de Sevilla

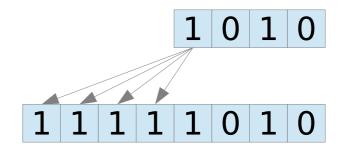
- Si S es el bit más significativo de A, $\{S,A\}_{(Ca2)} = A_{(Ca2)}$, donde $\{S,A\}$ denota la concatenación de S y A.
- Esto permite encontrar una cadena más larga que A que en notación complemento a 2 represente el mismo número que A usando un procedimiento denominado extensión de signo.





- ¿Como se realiza el proceso inverso de extensión de signo?
 - Se tiene una cadena A de n bits.
 - Se busca una cadena A' de longitud m<n tal que A'_{(Ca2=}A_{(Ca2}
- La cadena A' que buscamos existe si y sólo si A es la extensión de signo de A', es decir, si se cumple:
 - Los n-m+1 bits más significativos de A son iguales.
 - A' son los m bits menos significativos de A.





notación exceso

- Sea K un número entero, el número que representa una cadena de bits A en notación exceso K lo notamos A_{(exceso K}
- Con n bits los números representables son los enteros en el intervalo [-K, 2ⁿ-1-K] (un total de 2ⁿ)
- Para representar un número X se toma una cadena A tal que A₍₂=X+K. Ejemplo: "1100"_{(exceso 8}=4
- Para un valor fijo de n y K, sólo una cadena representa el número cero ("1000" para n=4 y K=8)
- Suele tomarse K=2ⁿ⁻¹. En tal caso al bit más significativo de A se le llama bit de signo ya que si dicho bit vale 1 entonces A_{(exceso K}≥0 y si vale 0 entonces A_{(exceso K}<0.

notaciones con signo

• Representación de números con signo, ejemplo 4 bits

	S-M	Ca1	Ca2	Exceso 2³=8
7	0111	0111	0111	1111
6	0110	0110	0110	1110
5	0101	0101	0101	1101
4	0100	0100	0100	1100
3	0011	0011	0011	1011
2	0010	0010	0010	1010
1	0001	0001	0001	1001
0	0000/1000	0000/1111	0000	1000
-1	1001	1110	1111	0111
-2	1010	1101	1110	0110
-3	1011	1100	1101	0101
-4	1100	1011	1100	0100
-5	1101	1010	1011	0011
-6	1110	1001	1010	0010
-7	1111	1000	1001	0001
-8	-	-	1000	0000

Sumador de magnitud

- Un sumador de magnitud de n bits es un dispositivo digital con dos entradas a y b (sumandos) de n bits, una entrada Cin (entrada de acarreo) de 1 bit, una salida S (suma) de n bits y una salida Cout (salida de acarreo) de 1 bit.
- Funcionalidad: $\{Cout,S\}_{(2}=a_{(2}+b_{(2}+Cin_{(2)}, donde)\}$ $\{Cout,S\}$ denota la concatenación de Cout y S.
- Propiedades:
 - Cout=1 si y sólo si $a_{(2}+b_{(2}+Cin_{(2}>2^n-1))$
 - Si *Cout*=0 entonces $S_{(2)}=a_{(2)}+b_{(2)}+Cin_{(2)}$
 - $S_{(2)}=(a_{(2)}+b_{(2)}+Cin_{(2)}) \mod 2^n$

Restador de magnitud

- Un restador de magnitud de n bits es un dispositivo digital con dos entradas a y b (minuendo y sustraendo) de n bits, una entrada Bin (entrada de préstamo) de 1 bit, una salida R (resta) de n bits y una salida Bout (salida de préstamo) de 1 bit.
- Funcionalidad: $\{Bout,R\}_{(2)}=(a_{(2)}-b_{(2)}-Bin_{(2)}) \mod 2^{n+1}$, es decir, $\{Bout,R\}_{(Ca2)}=a_{(2)}-b_{(2)}-Bin_{(2)}$
- Propiedades:
 - Bout=1 si y sólo si $a_{(2)}-b_{(2)}-Bin_{(2)}<0$
 - Si Bout=0 entonces $R_{(2)}=a_{(2)}-b_{(2)}-Bin_{(2)}$
 - $R_{(2)}=(a_{(2)}-b_{(2)}-Bin_{(2)}) \mod 2^n$

Sumadores con signo: Sumador en Ca2

- Sea un sumador de magnitud de n bits con entradas a, b, Cin y salidas S, Cout, si $a_{(Ca2}+b_{(Ca2}+Cin_{(2)})$ es representable en complemento a 2 con n bits entonces $S_{(Ca2}=a_{(Ca2}+b_{(Ca2}+Cin_{(2)}))$.
- Puede ver la demostración en los apéndices del tema.
- Conclusión: un sumador en Ca2 es funcionalmente idéntico a un sumador de magnitud.

Sumadores con signo: Sumador en Ca2

Tabla de verdad de sumador magnitud/CA2 de 4 bits

		$B_{\scriptscriptstyle (CA2}$	0	1	2	3	4	5	6	7	-8	-7	-6	-5	-4	-3	-2	-1
		B ₍₂	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$A_{\scriptscriptstyle (CA2}$	$A_{(2)}$	A∖B	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0	0	0000	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
1	1	0001	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	0000
2	2	0010	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	0000	0001
3	3	0011	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010
4	4	0100	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011
5	5	0101	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100
6	6	0110	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101
7	7	0111	0111	1000	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110
-8	8	1000	1000	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111
-7	9	1001	1001	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111	1000
-6	10	1010	1010	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001
-5	11	1011	1011	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010
-4	12	1100	1100	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011
-3	13	1101	1101	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100
-2	14	1110	1110	1111	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101
-1	15	1111	1111	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110

S=A+B

Restador en Ca2

- Sea un restador de magnitud de n bits con entradas a (minuendo), b (sustranedo), Bin y salidas R, Bout, si $a_{(Ca2}-b_{(Ca2}-Bin_{(2)})$ es representable en complemento a 2 con n bits entonces $R_{(Ca2}=a_{(Ca2}-b_{(Ca2}-Bin_{(2)}))$.
- Puede ver la demostración en los apéndices del tema.
- Conclusión: un restador en Ca2 es funcionalmente idéntico a un restador de magnitud.

Aritmética binaria

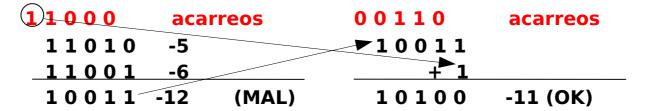
- La notación entera sin signo más utilizada para realizar cálculos aritméticos es la base 2.
 - Los sumadores/restadores de magnitud pueden implementarse de forma sencilla y eficiente.
- La notación entera con signo más utilizada para realizar cálculos aritméticos es Ca2.
 - Los sumadores/restadores de magnitud también son sumadores/restadores Ca2. Por eso los procesadores actuales usan las mismas instrucciones de suma/resta entera para ambas notaciones.
 - Sumar/restar en otras notaciones con signo es más complicado.

Ejemplo: Sumar en S-M

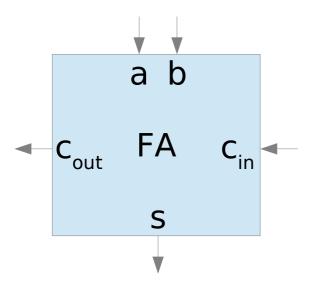
- Para obtener la suma de dos números en S-M:
 - Si ambos tienen el mismo signo
 - La magnitud del resultado coincide con la suma de las magnitudes.
 - El bit de signo del resultado es el mismo que el de cualquiera de los sumandos.
 - Si los números tienen distinto signo
 - La magnitud del resultado se obtiene restando la magnitud menor de la mayor.
 - El signo del resultado se corresponde con el signo que tenga la magnitud mayor.
- •El circuito que realizase ese cálculo requeriría sumadores de magnitud, restadores de magnitud, comparadores, multiplexores, etc.

Ejemplo: Sumar en Ca1

- Puede hacerse en dos pasos:
 - Paso 1: Se alimenta un sumador de magnitud con los sumandos Ca1 y se anota el valor de las salidas.
 - Paso 2: Sumar el valor obtenido de C_{OUT} al resultado



 Sumador completo Full Adder (F.A.): Tiene la funcionalidad de un sumador de magnitud de un bit.



а	b	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

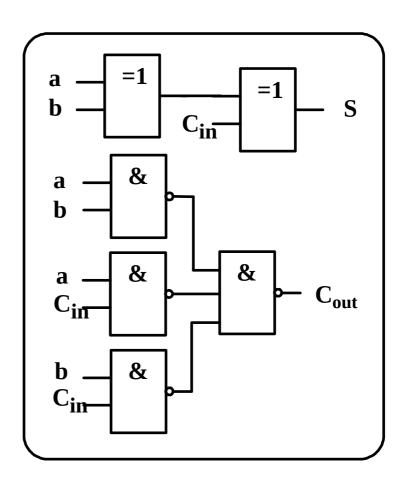
$$s = a \oplus b \oplus c_{in}$$

 $c_{out} = a b + a c_{in} + b c_{in}$

- Sumador completo Full Adder (FA)
 - Una implementación mediante puertas lógicas

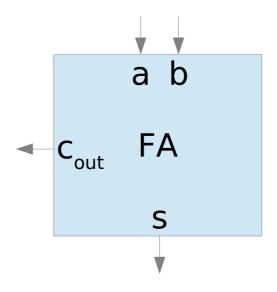
$$s = a \oplus b \oplus c_{in}$$

 $c_{out} = a b + a c_{in} + b c_{in}$



• Semisumador o Half Adder (H.A.): Carece de entrada

de carry.



a	b	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

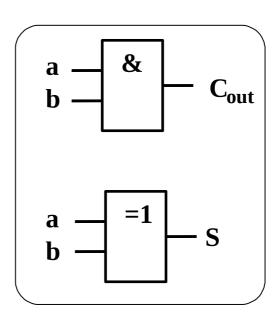
$$s = a \oplus b$$

 $c_{out} = a b$

- Semisumador o Half Adder (HA)
 - Una posible implementación mediante puertas lógicas

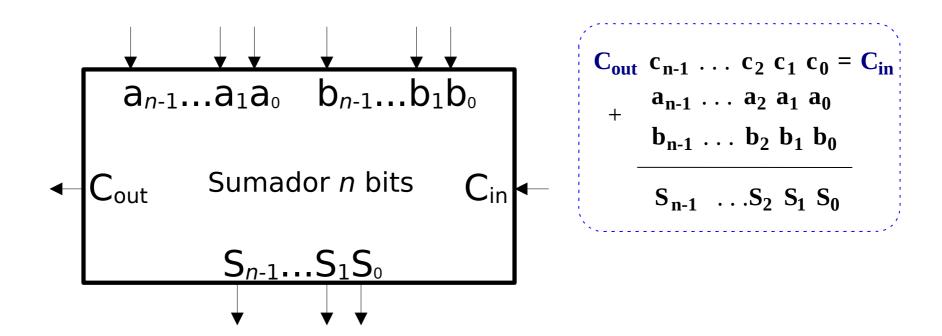
$$s = a \oplus b$$

 $c_{out} = a b$

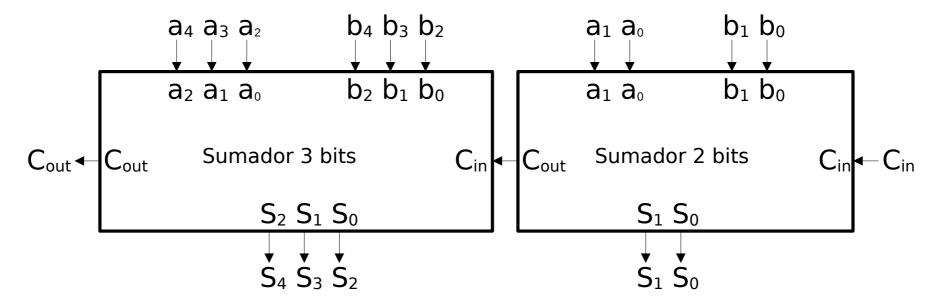


Descripción LDH de un sumador completo (FA)

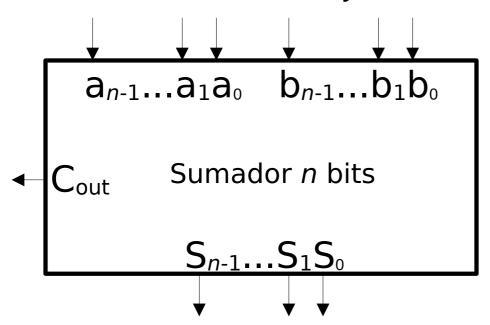
 Un sumador de magnitud/Ca2 de n bits con entrada de acarreo tiene esta estructura.



 Un sumador/restador puede construirse a partir de sumadores/restadores más pequeños encadenando sus entradas de carry/borrow. Por ejemplo, un sumador de 5 bits puede construirse encadenando un sumador de 2 bits son otro de tres bits.

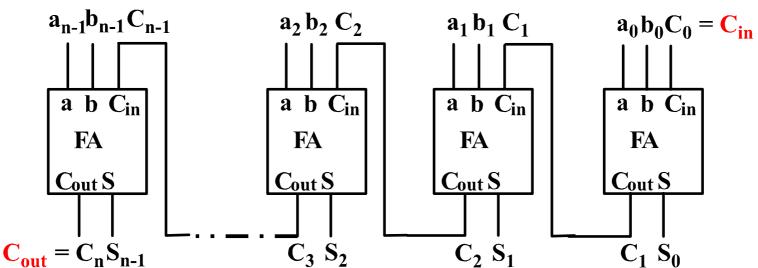


 Un sumador de magnitud/Ca2 de n bits sin entrada de acarreo funciona como un sumador que tuviese la entrada de acarreo fija a 0. Tiene esta estructura.

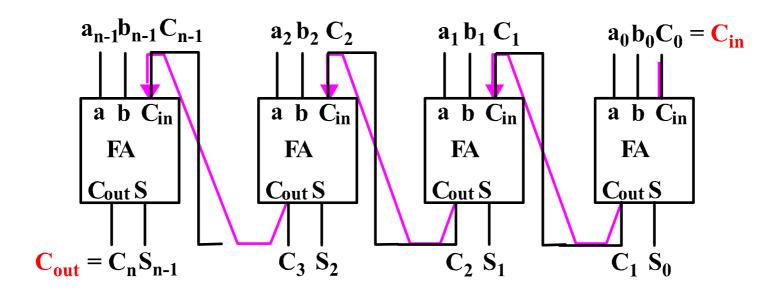


$$\begin{array}{c} C_{out} & c_{n\text{-}1} \, \dots \, c_2 \, c_1 \\ \\ + & a_{n\text{-}1} \, \dots \, a_2 \, a_1 \, a_0 \\ \\ b_{n\text{-}1} \, \dots \, b_2 \, b_1 \, b_0 \\ \\ \hline \\ S_{n\text{-}1} \, \dots S_2 \, S_1 \, S_0 \end{array}$$

- La implementación conocida como sumador con acarreo serie (también llamada sumador de rizado o ripple adder) es la más intuitiva y tiene un coste razonablemente bajo.
- Se trata de un circuito modular construido con sumadores completos de un bit. Si no hay entrada de acarreo se usa un semisumador para generar el bit menos significativo.



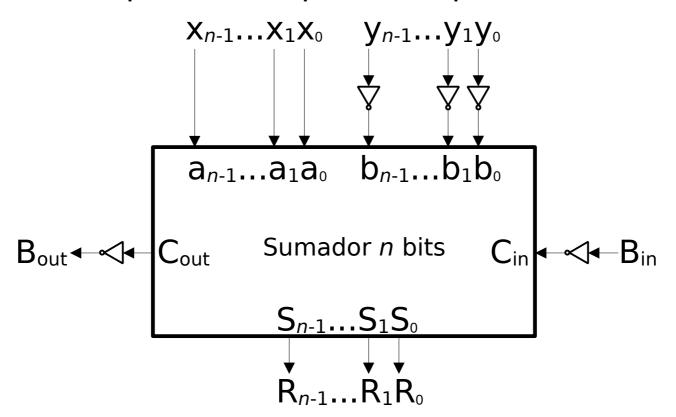
- Es lento debido a la propagación serie del acarreo
- El tiempo que tarda en realizarse una suma crece linealmente con el número de bits



Descripción LDH de un sumador de 8 bits

```
module adder8 e(
    input [7:0] a, // primer operando
    input [7:0] b, // segundo operando
    input cin, // acarreo de entrada
    output [7:0] s, // salida de suma
    output cout // acarreo de salida
/* Este sumador se construye mediante la conexión en cascada de 8
* sumadores completos (FA). Cada FA genera un bit del resultado.
* 'c' es una señal auxiliar para la conexión del acarreo de salida de
una
* etapa con el acarreo de salida de la etapa siguiente */
wire [7:1] c;
/* El acarreo de entrada del primer FA es el acarreo de entrada del
* módulo sumador */
    fa fa0 (a[0], b[0], cin, s[0], c[1]);
    fa fa1 (a[1], b[1], c[1], s[1], c[2]);
    fa fa2 (a[2], b[2], c[2], s[2], c[3]);
    fa fa3 (a[3], b[3], c[3], s[3], c[4]);
    fa fa4 (a[4], b[4], c[4], s[4], c[5]);
    fa fa5 (a[5], b[5], c[5], s[5], c[6]);
    fa fa6 (a[6], b[6], c[6], s[6], c[7]);
/* El acarreo de salida del último FA es el acarreo de salida del
* módulo sumador */
    fa fa7 (a[7], b[7], c[7], s[7], cout):
endmodule // adder8 e
```

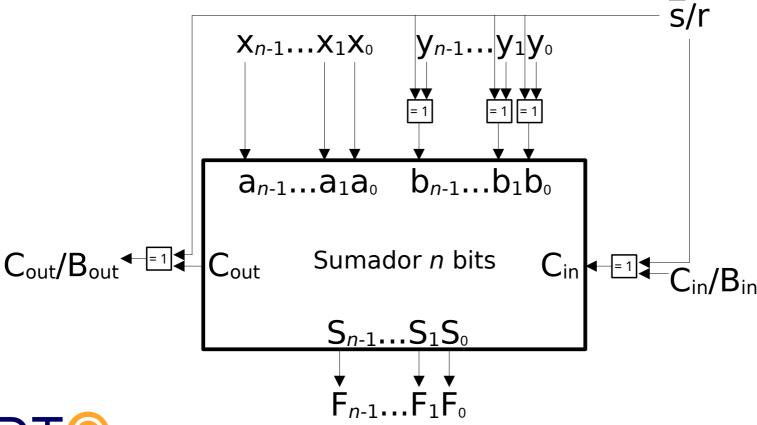
 Un restador de magnitud/Ca2 de n bits con señales de entrada x, y, Bin (minuendo, sustraendo, entrada de prestamo) y señales de salida R, Bout (resta, salida de prestamo) puede implementarse así:



Puede ver la demostración en los apéndices del tema.

Implementación de un sumador-restador

 Conclusión: Este circuito funciona como un sumador de magnitud/Ca2 o como un restador de magnitud/Ca2 dependiendo del valor de la señal de control s/r.



Desbordamiento en operaciones enteras

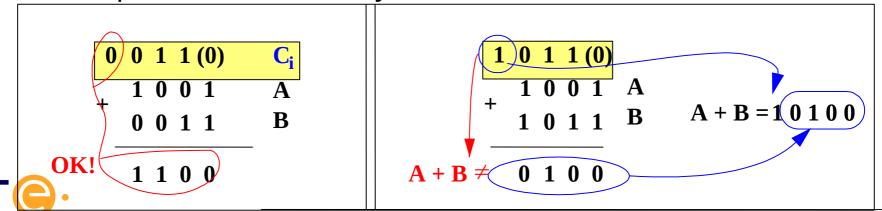
- A veces, a un circuito diseñado para realizar cálculos en alguna notación entera se le pide computar una operación cuyo resultado no es representable.
- Cuando eso ocurre se dice que se produce un desbordamiento.
- Ejemplo: Supongamos que un sumador/restador de 4 bits como el mostrado anteriormente se pone x=1111, y=0001, $\overline{s}/r=0$ y Cin/Bin=0. ¿Se produciría desbordamiento?

Desbordamiento en operaciones enteras

- A veces, a un circuito diseñado para realizar cálculos en alguna notación entera se le pide computar una operación cuyo resultado no es representable.
- Cuando eso ocurre se dice que se produce un desbordamiento.
- Ejemplo: Supongamos que un sumador/restador de 4 bits como el mostrado anteriormente se pone x=1111, y=0001, s/r=0 y Cin/Bin=0. ¿Se produciría desbordamiento?
- La pregunta está incompleta porque ese dispositivo sirve para hacer operaciones en dos notaciones, y no se menciona cual de ellas se está usando:
 - Si es sin signo (base 2), sí hay desbordamiento
 - Si es con signo (Ca2), no hay desbordamiento

- En un circuito aritmético, las salidas empleadas para representar los valores que se pretenden calcular se denominan salidas de datos.
- El resto de salidas proporciona algún tipo de información sobre esos valores y se denominan salidas de estado o, si son de un sólo bit, salidas de condición o flags. Las típicas de un sumador/restador entero se denominan C, V, S, N y Z.

- Vale 1 si y sólo si hay desbordamiento usando notación sin signo.
- En nuestro sumador/restador de n bits es la salida Cout/Bout ya que:
 - En una suma es imposible que el resultado sea menor que 0, por tanto habrá desbordamiento si y sólo si es mayor que 2ⁿ-1, es decir, si y sólo si Cout=1.
 - En una resta es imposible que el resultado sea mayor que 2ⁿ-1, por tanto habrá desbordamiento si y sólo si es menor que 0, es decir, si y sólo si *Bout*=1.



- Del inglés oVerflow
- Vale 1 si y sólo si hay desbordamiento usando notación con signo.
- Por ejemplo, supongamos que añadimos esta salida a un sumador/restador de 4 bits como el del ejemplo y lo usamos para realizar las siguientes sumas:

$$1001 = -7$$
 $1100 = -4$ $0101 = +5$ $0100 = +4$ $1110 = -2$ $10000 = 0$ $01001 = -7$ $1100 = -4$ $1001 = -7$ $1100 = -4$ $1111 = -1$ $1001 = -7$ $11011 = -5$ $11011 = +3$ $10011 = +3$

V=0 (no hay desbordamiento)

V=1 (hay desbordamiento)

- Del inglés Sign. No debe confundirse con la salida de datos homónima del sumador
- Vale 1 si y sólo si el resultado es menor que cero usando notación complemento a 2.
- Proporciona información válida incluso cuando hay desbordamiento.
- Si añadimos esta señal a nuestro sumador/restador, al usar notación complemento a 2 el resultado correcto será siempre {S,F}_{(Ca2}

$$1001 = -7$$
 $1100 = -4$ $0101 = +5$ $0100 = +4$ $11100 = -2$ $10000 = 0$ $01001 = -7$ $1100 = -4$ $1000 = -4$ $1001 = -7$ $1100 = -4$ $1001 = -7$ $1111 = -1$ $1010 = -6$ $11011 = -5$ $11011 = +3$

V=0 (no hay desbordamiento)

V=1 (hay desbordamiento)

- Del inglés Negative
- Es igual al bit más significativo de la salida de datos.
- N y S pueden ser distintos, porque puede haber desbordamiento.

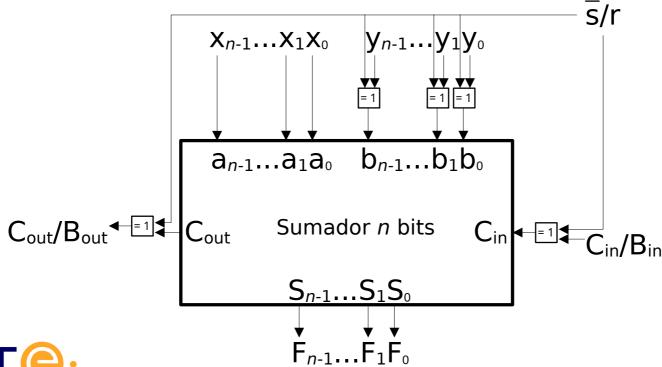
$$1001 = -7$$
 $1100 = -4$ $0101 = +5$ $0101 = +5$ $0100 = +4$ $0100 = +4$ $0100 = +4$ $0100 = -7$ $0100 = -7$ $01001 = -7$ $01001 = -7$ $01001 = -7$ $01001 = -7$ $01001 = -7$ $0111 = -7$ $01001 = -7$ $0111 = -7$ $01001 = -7$ $01111 = -7$ $01111 = -7$ $01111 = -7$

V=0 (no hay desbordamiento)

V=1 (hay desbordamiento)

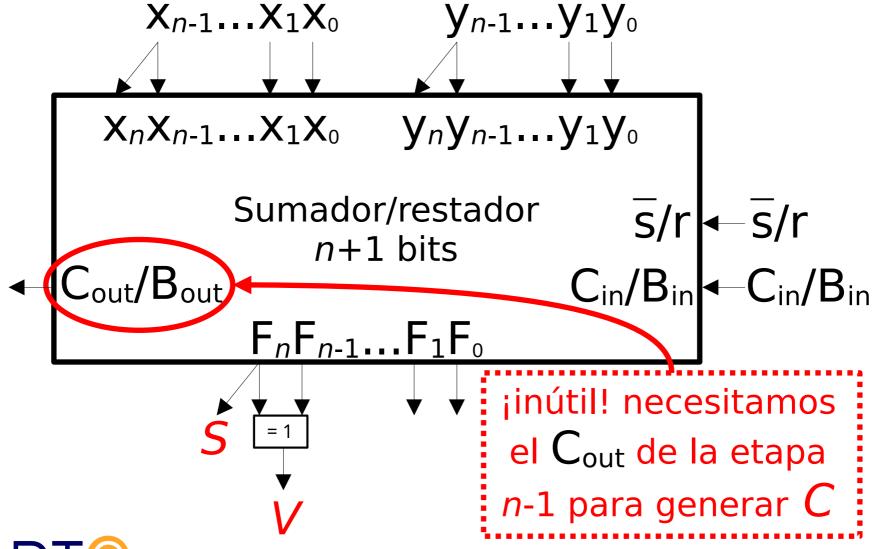
- Del inglés Zero
- Vale 1 si y sólo si todos los bits de la salida de datos valen
 0.
- Si añadimos esta salida a un sumador/restador de n bits como el del ejemplo, independientemente de si se usa notación con signo nos dará la siguiente información:
 - Si Z=1 el valor del resultado mod 2^n es igual a cero.
 - Si Z=0 el valor del resultado mod 2ⁿ es distinto de cero.

- ¿Como añadimos las salidas C, V, S, N y Z en el sumador/restador de n bits como el del ejemplo?
- C es Cout/Bout.
- N es F_{n-1}.
- Z es el NOR de los bits de F.

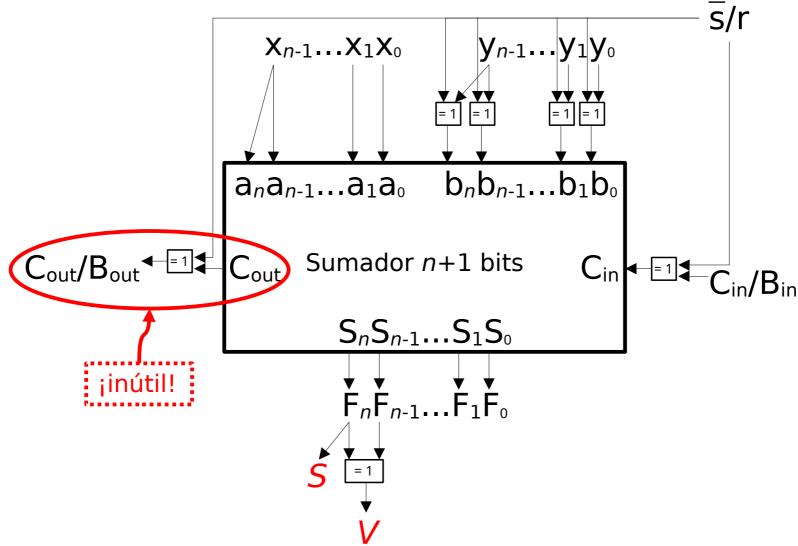


- Para implementar V y S consideremos lo siguiente:
 - Con n bits, los números representables en Ca2 son los enteros en el intervalo [-2ⁿ⁻¹,2ⁿ⁻¹ - 1]
 - El resultado más bajo sería $(-2^{n-1})+(-2^{n-1})=-2^n$
 - El resultado más alto sería $(2^{n-1} 1) (-2^{n-1}) = 2^n 1$
 - Con n+1 bits, los números representables en Ca2 son los enteros en el intervalo [-2ⁿ,2ⁿ - 1]
 - Por tanto, el resultado del sumador/restador de n bits puede siempre representarse en Ca2 con n+1 bits.
 - La representación correcta del resultado en Ca2 con n+1 bits podemos obtenerla alimentando un sumador/restador de n+1 bits con la extensión de signo de los operandos.

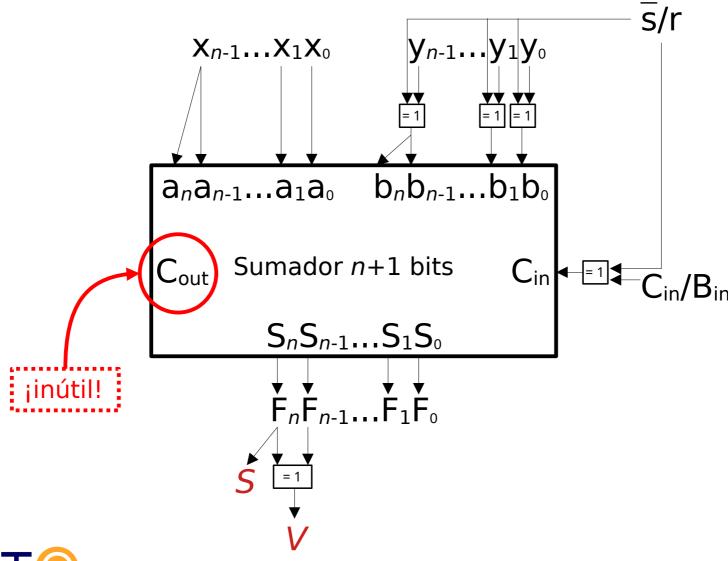
Por tanto V y S podrían generarse con este circuito:



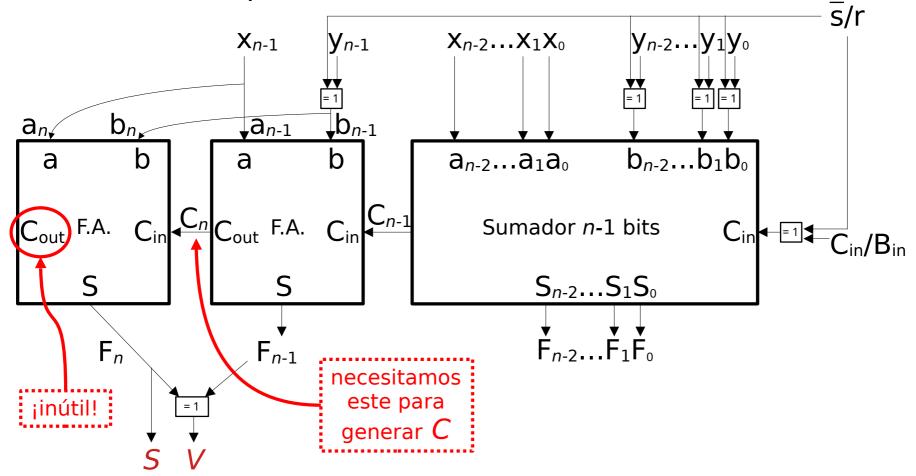
El sumador/restador de n+1 bits podría hacerse así:



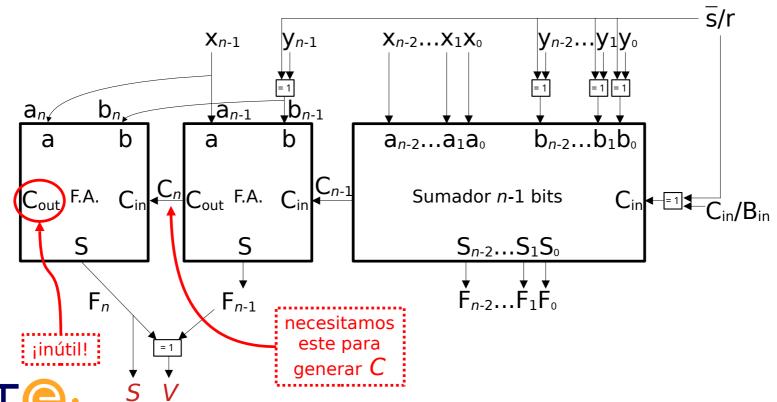
Optimizando:



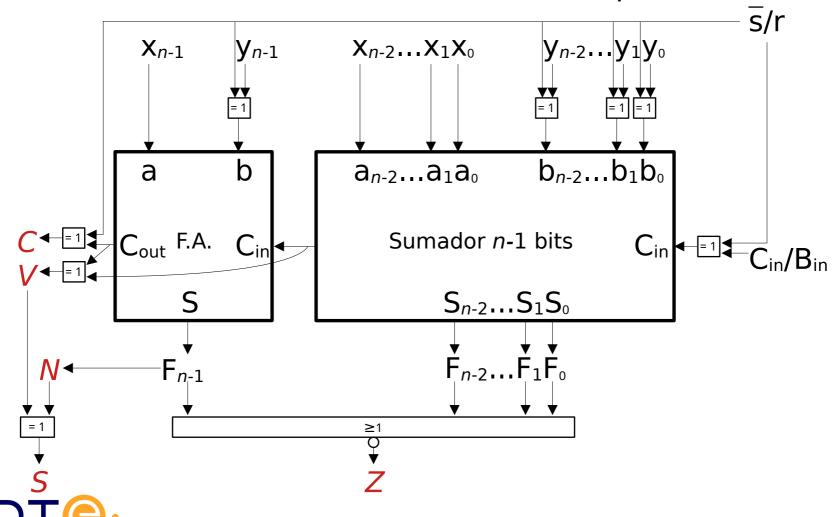
Continuemos la optimización. El sumador de n+1 bits podría hacerse con un sumador de n-1 bits en serie con dos sumadores completos de un bit:



- $F_{n-1} = a_{n-1} \oplus b_{n-1} \oplus C_{n-1}$
- $F_n = a_n \oplus b_n \oplus C_n = a_{n-1} \oplus b_{n-1} \oplus C_n$
- $V=F_n\oplus F_{n-1}=C_n\oplus C_{n-1}$
- $S=F_n=F_n\oplus 0=F_n\oplus F_{n-1}\oplus F_{n-1}=V\oplus N$



Por tanto podemos prescindir de uno de los sumadores completos. La implementación del sumador/restador de n bits con las salidas de estado mencionadas podría ser así:

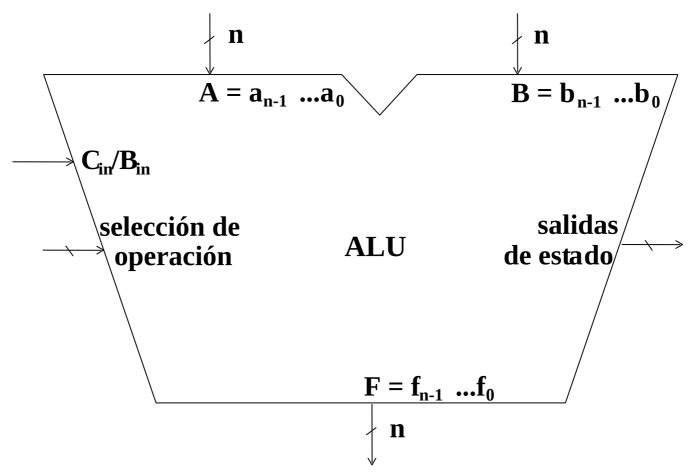


Descripción LDH de un sumador/restador de n bits

```
module sumsub1 (
      input signed [WIDTH-1:0] a, // primer operando
     input signed [WIDTH-1:0] b, // segundo operando
      input op, // operación (0-suma, 1-resta)
      output signed [WIDTH-1:0] f, // salida
      output ov // desbordamiento
      parameter WIDTH = 8;
      reg f, ov;
/* f y ov se declaran como variables (tipo 'reg') porque van a usarse en un procedimiento 'always' */
      always @*
      begin:sub
/* Definimos una variable local al bloque para realizar la suma con un bit adicional
* La definición de variables locales es posible sólo si se nombra el bloque ('sub') en * este caso */
            reg signed [WIDTH:0] s;
/* Aquí, la construcción 'if' hubiera sido igual de efectiva que el 'case' pero, en general, cuando la decisión
* depende de una sola variable (en este caso 'op') 'case' resulta más claro, especialmente cuando el
* número de posibles valores de la variable es elevado */
            case (op)
                  0:
                        s = a + b:
                  default:
                        s = a - b:
            endcase
// Salida de desbordamiento
/* 's' contiene el valor correcto de la operación. La extensión del signo se realiza automáticamente ya que
* los tipos son 'signed'. El desbordamiento se obtiene: */
            if (s[WIDTH] != s[WIDTH-1])
                  ov = 1:
            else
                  ov = 0;
// Salida
           f = s[WIDTH-1:0];
      end
endmodule // sumsub1
```

- •Es un circuito que realiza operaciones aritméticas y lógicas. Normalmente usa dos operandos de entrada.
- •Tiene señales de control de entrada que permiten seleccionar la operación a realizar.

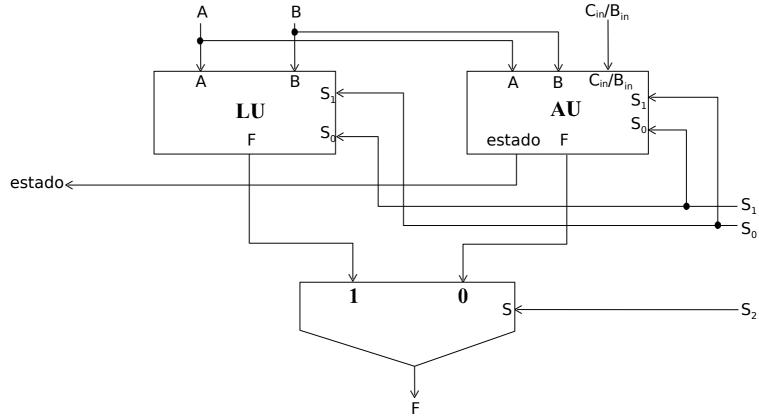
· Representación esquemática de una ALU



• Ejemplo de funciones de una posible ALU con tres señales de selección de operación:

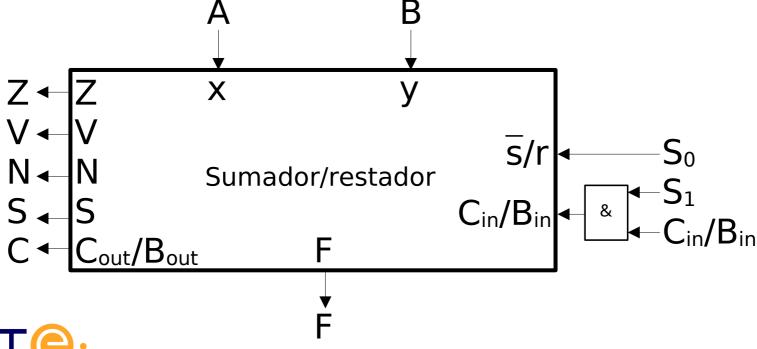
S ₂ S ₁ S ₀	Función
0 0 0	$F_{(2} = A_{(2} + B_{(2} \mod 2^n)$
0 0 1	$F_{(2} = A_{(2} - B_{(2)} \mod 2^n$
0 1 0	$F_{(2} = A_{(2} + B_{(2} + Cin/Bin_{(2} mod 2^n))$
0 1 1	$F_{(2} = A_{(2} - B_{(2} - Cin/Bin_{(2} mod 2^n))$
1 0 0	F = A AND B
1 0 1	F = A OR B
1 1 0	F = NOT A
1 1 1	F = A XOR B

• Ejemplo de implementación de la ALU del ejemplo: Se divide el diseño en una unidad aritmética (AU) y una unidad lógica (LU).



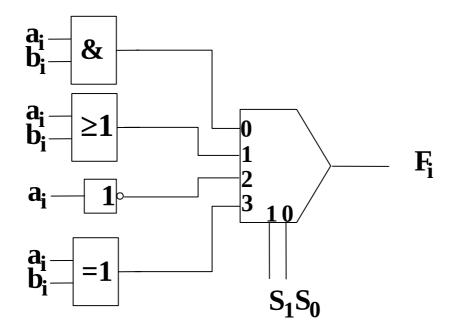
Ejemplo de implementación de la unidad aritmética:

$S_2 S_1 S_0$	Función ALU
0 0 0	$F_{(2)} = A_{(2)} + B_{(2)} \mod 2^n$
0 0 1	$F_{(2)} = A_{(2)} - B_{(2)} \mod 2^n$
0 1 0	$F_{(2)} = A_{(2)} + B_{(2)} + Cin/Bin_{(2)} \mod 2^n$
0 1 1	$F_{(2)} = A_{(2)} - B_{(2)} - Cin/Bin_{(2)} \mod 2^n$



• Ejemplo de implementación de la unidad lógica:

$S_2 S_1 S_0$	Función ALU
1 0 0	F = A AND B
1 0 1	F = A OR B
1 1 0	F = NOT A
1 1 1	F = A XOR B



Apéndices

Sumadores con signo: Sumador en Ca2

- Sea un sumador de magnitud de n bits con entradas a, b, Cin y salidas S, Cout, si $a_{(Ca2}+b_{(Ca2}+Cin_{(2)})$ es representable en complemento a 2 con n bits entonces $S_{(Ca2}=a_{(Ca2}+b_{(Ca2}+Cin_{(2)}))$.
- Demostración: La hipótesis dice que hay una cadena S' de n bits tal que $S'_{(Ca2)} = a_{(Ca2)} + b_{(Ca2)} + Cin_{(2)}$. Hay que demostrar que S' = S. Por definición tenemos

$$S'_{(2)} = S'_{(Ca2)} \mod 2^n = (a_{(Ca2)} + b_{(Ca2)} + Cin_{(2)}) \mod 2^n =$$

$$= [(a_{(Ca2)} \mod 2^n) + (b_{(Ca2)} \mod 2^n) + Cin_{(2)}] \mod 2^n = (a_{(2)} + b_{(2)} + Cin_{(2)}) \mod 2^n = S'_{(2)} = S'_{(2)} \implies S'_{(2)} \implies S'_{(2)} = S'_{(2)} \implies S'_{(2)} = S'_{(2)} \implies S'_{(2)} \implies S'_{(2)} = S'_{(2)} \implies S'_{(2)} \implies S'_{(2)} = S'_{(2)} \implies S'_{(2)$$

• Conclusión: un sumador en Ca2 es funcionalmente idéntico a un sumador de magnitud.

Restador en Ca2

- Sea un restador de magnitud de n bits con entradas a (minuendo), b (sustranedo), Bin y salidas R, Bout, si $a_{(Ca2}-b_{(Ca2}-Bin_{(2)})$ es representable en complemento a 2 con n bits entonces $R_{(Ca2}=a_{(Ca2}-b_{(Ca2}-Bin_{(2)}))$.
- Demostración: La hipótesis dice que hay una cadena R' de n bits tal que $R'_{(Ca2)} = a_{(Ca2)} b_{(Ca2)} Bin_{(2)}$. Hay que demostrar que R' = R. Por definición tenemos

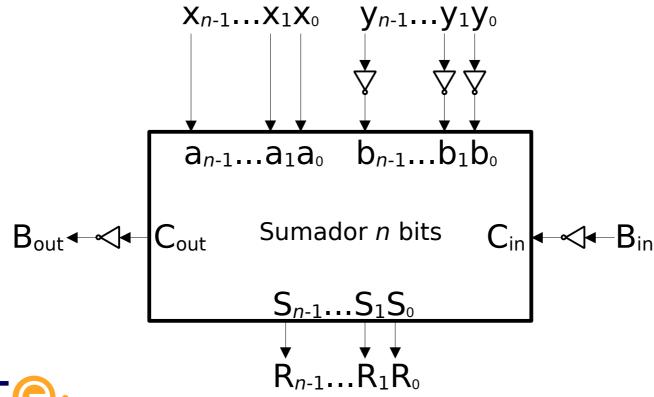
 $R'_{(2)} = R'_{(Ca2)} \mod 2^n = (a_{(Ca2)} - b_{(Ca2)} - Bin_{(2)}) \mod 2^n =$

 $=[(a_{(Ca2} \mod 2^n)-(b_{(Ca2} \mod 2^n)-Bin_{(2}] \mod 2^n]=(a_{(2}-b_{(2}-Bin_{(2)}) \mod 2^n]=R_{(2)}$

 $R'_{(2)}=R_{(2)}$ implica que R'=R, pues tienen la misma longitud.

 Conclusión: un restador en Ca2 es funcionalmente idéntico a un restador de magnitud.

 Un restador de magnitud/Ca2 de n bits con señales de entrada x, y, Bin (minuendo, sustraendo, entrada de prestamo) y señales de salida R, Bout (resta, salida de prestamo) puede implementarse así:



- Antes de demostrar que funciona, véase el pequeño lema $L \mod 2^{n+1}=0$, siendo $L=(1+\overline{Cout}_{(2}-Cout_{(2)})$ 2^n
- Sabemos que

$$Cout,S$$
₍₂= $a_{(2}+b_{(2}+Cin_{(2}=x_{(2}+\overline{y}_{(2}+\overline{Bin}_{(2})$

- □ Bout=Cout
- □ *R*=*S*
- Hay que demostrar
 - $Bout,R}_{(2)}=(x_{(2)}-y_{(2)}-Bin_{(2)}) \mod 2^{n+1}$

Demostración:

```
\{Bout,R\}_{(2)} = \{Bout,R\}_{(2)} \mod 2^{n+1} = \{\overline{Cout},S\}_{(2)} \mod 
(Cout_{2}2^{n}+S_{2}) \mod 2^{n+1}=
(2^n + Cout_{(2)}2^n - Cout_{(2)}2^n + Cout_{(2)}2^n + S_{(2)}-2^n) \mod 2^{n+1} =
[(1+Cout_{(2)}-Cout_{(2)})2^n+\{Cout_{(2)}S\}_{(2)}-2^n]\mod 2^{n+1}=
(L+\{Cout,S\}_{(2}-2^n) \mod 2^{n+1} =
[(L \text{ mod } 2^{n+1} + (\{Cout, S\}_{2} - 2^{n}) \text{ mod } 2^{n+1}] \text{ mod } 2^{n+1} =
[(\{Cout,S\}_{(2}-2^n) \mod 2^{n+1}] \mod 2^{n+1} =
(\{Cout,S\}_{(2}-2^n) \mod 2^{n+1}=(x_{(2}+\overline{y_{(2}}+\overline{Bin}_{(2}-2^n)) \mod 2^{n+1}=
(x_{(2}+2^n-1-y_{(2}+2^1-1-Bin_{(2}-2^n)) \mod 2^{n+1}=
(x_{(2}-y_{(2}-Bin_{(2)}) \mod 2^{n+1})
```

