CED: Circuitos Electrónicos Digitales

Universidad de Sevilla

Tema 1 Presentación. Introducción

Guión

Presentación

- -Información general
- -Proyecto docente para CED

·Introducción

- -Electrónica
- -Señales eléctricas
- -Electrónica analógica y digital
- -Terminología digital
- -CED en el Grado de Informática

Presentación

FRANCISCO SIVIANES CASTILLO (Grupo 3)

- Departamento de Tecnología Electrónica
 - Despacho: G1.61
 - Tutorías:
 - Lunes de 11:00 a 14:00
 - Martes de 11:00 a 12:30
 - Viernes de 12:30 a 14:00
 - Correo: fsivianes@us.es

Presentación

Material de la asignatura:

(guía de la asignatura, presentaciones de los temas, boletines de problemas y prácticas, ...)

Puede encontrarse en

- Web de CED-TI

http://www.dte.us.es/docencia/etsii/gii-ti/cedti

- Enseñanza virtual https://ev.us.es/

También se publicarán **anuncios** en la web de CED-TI.

Calificaciones en enseñanza virtual.

Proyecto docente para CED

Programa y bibliografía

Actividades docentes

·Sistema de evaluación

Proyecto docente para CED

PROGRAMA

-Bloque 1: Circuitos electrónicos y familias lógicas

- Tema 1 Presentación. Introducción
- Tema 2 Dispositivos y circuitos electrónicos (no evaluable)
- Tema 3 Familias lógicas

-Bloque 2: Aplicaciones combinacionales

- Tema 4 Circuitos combinacionales
- Tema 5 Subsistemas combinacionales
- Tema 6 Unidades aritméticas y lógicas

-Bloque 3: Aplicaciones secuenciales

- Tema 7 Circuitos secuenciales síncronos
- Tema 8 Subsistemas secuenciales

-Bloque 4: Aplicaciones de memoria

Tema 9 Dispositivos de memoria semiconductora

Bibliografía

- •Floyd, Fundamentos de sistemas digitales , Prentice-Hall. Disponible online
- •Nelson et al., Análisis y Diseño de Circuitos Lógicos Digitales, Prentice-Hall. Disponible online
- •Baena et al., Problemas de circuitos y Sistemas Digitales, McGraw-Hill.
- •Molina et al., Estructura y Tecnología de Computadores, 2nd. Ed., Panella. Disponible online
- Bibliografía específica: consultar proyecto docente.

Proyecto docente para CED

ACTIVIDADES DOCENTES

CLASES

- -Clases teóricas
- -Clases de problemas
- -Prácticas de laboratorio

PRUEBAS

- -Exámenes
- -Trabajos u otras actividades

TUTORÍAS

Actividades docentes 6 ECTS

- -En clase (~60 horas, 4 h/semana)
 - Sesiones teóricas: conceptos, ejemplos, test de teoría.
 - Sesiones prácticas: resolución de ejercicios, pruebas prácticas.
 - Sesiones de laboratorio: implementación y test de circuitos
- -Fuera de clase (~90 horas, 6 h/semana)
 - Estudio
 - Resolución de ejercicios
 - Preparación de clases de laboratorio

Actividades docentes Clases

- Las **clases de aula** se imparten en el AULA H0.11, <u>todos los</u> <u>jueves del cuatrimestre (17:40-19:30)</u> y también <u>los lunes de las semanas impares (15:30-17:20)</u>
- Las **clases de laboratorio** se imparten los lunes de las <u>semanas pares</u> en los laboratorios G1.32 (subgrupos L10 y L11) y G1.35 (subgrupos L12 y L13), en los siguientes horarios:

Subgrupos	Lunes de semana par de
L10, L12	15:30 a 17:20
Subgrupo	Lunes de semana par de
L11, L13	19:40 a 21:30

Es necesario inscribirse en un grupo de laboratorio antes del comienzo de las prácticas (26 de septiembre).

La inscripción se realizará a través de enseñanza virtual.

Actividades docentes Evaluación

- Se evalúa
 - Teoría/problemas (notaT&P) (80%)
 - Laboratorio (notaLAB) (20%)

-El aprobado en la asignatura requiere el aprobado (nota superior o igual a 5) en ambas partes (teoría/problemas y laboratorio) por separado.

-Si notaT&P>=5 y notaLAB>=5 la nota final es NOTA = $0.8 \times 10^{-2} \times 10^{-$

Actividades docentes Evaluación

•Dos formas:

- Durante el desarrollo del curso
- Por examen final

$NOTA = 0.8 \times notaT&P + 0.2 \times notaLAB$

(siempre que notaT&P>=5 y notaLAB>=5)

	notaT&P	notaLAB
Por curso	dos pruebas (antes del 22 de diciembre)	se evalúan todas las prácticas
Por examen final	25 de enero (aula por determinar)	25 de enero (examen en laboratorio)

Evaluación por curso (aula)

- •2 pruebas escritas en horario de aula
 - 1º prueba escrita:
 - Fecha a determinar
 - Contenido: Bloques I y II
 - Peso: 50%
 - Nota mínima: 3 (para hacer media)
 - 2^ª prueba escrita:
 - Fecha: antes de fin de curso
 - Contenido: Bloques III y IV
 - Peso: 50%
 - Nota mínima: 3 (para hacer media)

Evaluación por curso (laboratorio)

•7 sesiones:

- Sesión 1 (peso 5%).
- Sesión 2 (peso 10%).
- Sesión 3 (peso 15%).
- Sesión 4a (peso 10%).
- Sesión 4b (peso 10%).
- Sesión 5 (peso 25%).
- Sesión 6 (peso 25%).

Evaluación final

- Dos partes independientes, se pueden realizar una de ellas o las dos, según se quiera o necesite:
 - Teoría/problemas.
 - Laboratorio.
- Para el examen final de T&P:
 - sólo hay que examinarse de los parciales no superados, es decir, con nota <5.
 - NA será la media de la nota del bloque ya superado y el evaluado en el examen final (si la nota >= 3).
 - los alumnos que no hayan superado ninguno de los bloques se examinarán sobre toda la materia.
 - NA será la nota del examen final.

Evaluación final

• Las notas aprobadas correspondientes a teoría/problemas (incluso parciales) y/o laboratorio **se conservan** para todo el año académico (1ª, 2ª y 3ª convocatoria).

• Finalizada la evaluación por curso o final, y supuesto que se haya conseguido el aprobado en aula y laboratorio (NA>=5 y NL>=5), el alumno obtendrá la nota final NF

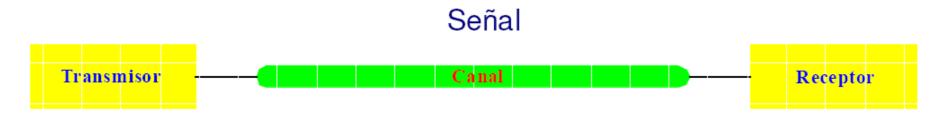
NF = 0.8 NA + 0.2 NL

Guión

Presentación

- -Entorno institucional
- -Proyecto docente para CED

·Introducción


- -Electrónica
- -Señales eléctricas
- -Electrónica analógica y digital
- -Terminología digital
- -CED en el Grado de Informática

·Electrónica

- Estudia dispositivos cuyo funcionamiento se basa en el comportamiento del electrón.
- Los electrones son partículas elementales:
 - diminutas ($\sim 10^{-12}$ cm)
 - rápidas (300000 km/s)
 - llevan carga eléctrica
- Los dispositivos electrónicos pueden procesar señales eléctricas.

·Señales eléctricas

- una señal eléctrica es la variación de una magnitud eléctrica (corriente o tensión) que se utiliza para transmitir información

- la señal lleva los datos del mensaje desde el transmisor al receptor por un canal
- la información debe ser bien enviada y bien recibida, y con la mayor calidad: velocidad, consumo, robustez, sencillez,...

·Señales eléctricas

- -Tienen buenas propiedades:
 - -son fáciles de transmitir
 - -fáciles de detectar y medir
 - -fáciles de transformar y combinar
- -Hay gran variedad de transductores:
 - -estos se usan para transformar magnitudes físicas de diverso tipo en magnitudes eléctricas o viceversa
 - -podemos portar información de diferente procedencia mediante señales eléctricas

Electrónica (dos definiciones)

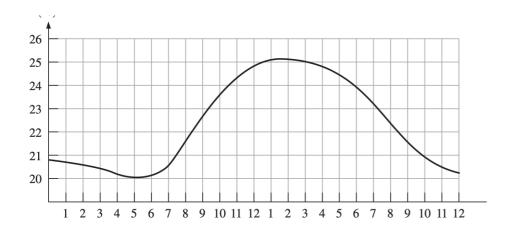
- Estudio y aplicación del comportamiento de los electrones en diversos medios, como el vacío, los gases y los semiconductores, sometidos a la acción de campos eléctricos y magnéticos.

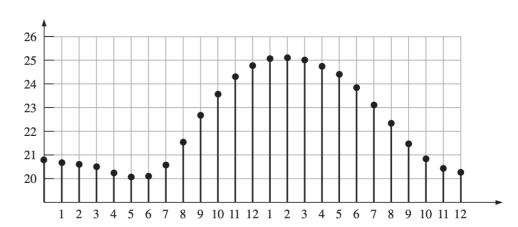
- Técnica de manejo de información codificada en señales eléctricas a través de dispositivos que aprovechan las propiedades de los electrones,
 - según la manera de codificar la información distinguiremos:
 - -Electrónica analógica
 - -Electrónica digital

·Electrónica analógica

- Representa los valores de una magnitud física mediante una tensión por "analogía cuantitativa": a mayor cantidad, mayor tensión: hay proporcionalidad
- El rango de valores de la tensión es continuo entre dos valores extremos (Vmax y Vmin)

- Las senaies anaiogicas se pueden representar matemáticamente como una función frente al tiempo
- Se utiliza un transductor para realizar la traslación de la magnitud física a la señal eléctrica




·Electrónica digital

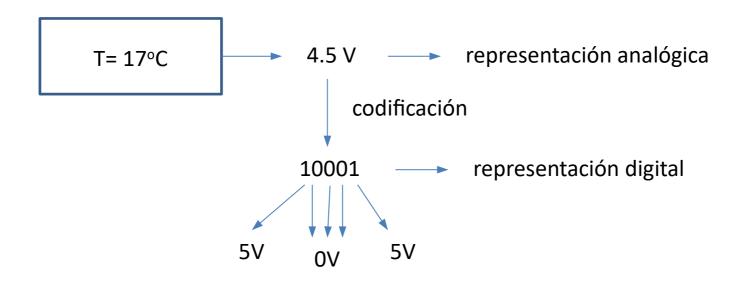
- Representa los valores de una magnitud física mediante una serie limitada de valores:

-Sistema decimal: 0,1,2,3,...,8,9

-Sistema binario: 0 y 1

·Electrónica digital

- -La electrónica digital es binaria
 - representa los valores de una magnitud física mediante **m** señales eléctricas que solo admiten dos valores:
 - nivel **bajo**: representado por 0, L ó Vmin
 - nivel **alto**: representado por 1, H ó Vmax



·Electrónica digital

- -Para expresar cada valor de una magnitud se precisan **m** señales, la relación se establece mediante un proceso de codificación
- Las señales digitales se suelen representar mediante tablas de unos y ceros o mediante funciones de conmutación
- -Para obtener la representación digital de la magnitud física se utiliza un transductor seguido de un convertidor A/D

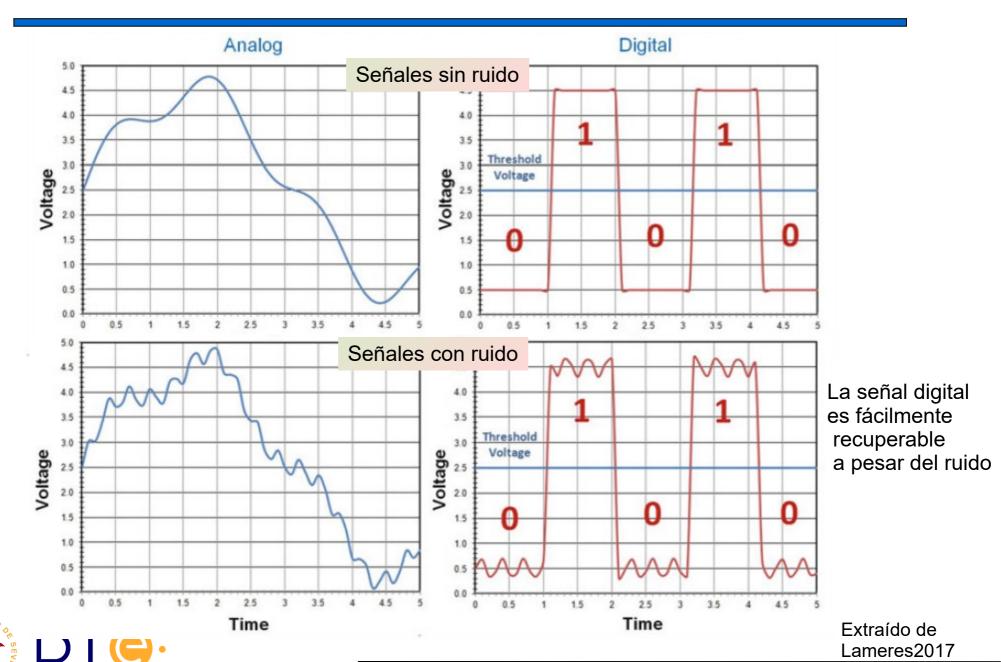
·Ejemplo:

-Consideremos la una magnitud física como la temperatura T. Queremos representarla mediante una señal eléctrica, por ejemplo, de tensión.

·Ventajas de la representación digital:

-Precisión:

-en la representación analógica, donde se usa todo el rango de valores de tensión, valores próximos pueden ser confundidos o difícilmente diferenciados


-en la representación digital se utilizan palabras binarias diferentes

·Ventajas de la representación digital:

- Inmunidad frente al ruido electromagnético:
 - las tensiones digitales corresponden a dos valores distantes, por ejemplo 0V y 5V, la perturbación ha de ser muy grande para que el nivel bajo sea confundido con el alto o viceversa.
 - -las tensiones analógicas recorren todo el rango de valores, por ejemplo entre 0v y 5v, de forma que una mínima perturbación modificará el valor que representan. No es posible detectar que no es el valor correcto dado que es un valor permitido.
- Fortaleza frente a fallos de precisión

·Ventajas de la representación digital:

- -Circuitería simple: para producir un 0 o un 1 basta con un conmutador eléctrico y esto es fácil de obtener a partir de transistores
- -Circuitos con bajo consumo de potencia: portabilidad
- -Tratamiento homogéneo de la información: sonido, imágenes, texto, ...
- -Facilidad de cálculo:
 - -se pueden usar los mecanismos de cálculo propios del sistema binario (base 2)
 - -relación con la lógica matemática:
 - -aplicación de las reglas del álgebra de Boole

Resumen

- Los circuitos electrónicos (la tecnología electrónica) son una forma conveniente de resolver muchos problemas prácticos:
 - Detectar objetos y eventos
 - Controlar procesos
 - Transmitir y procesar información

- ...

- La electrónica digital simplifica aun más muchas tareas y permite aplicaciones adicionales a la electrónica analógica:
 - Procesado complejo de datos
 - Implementación de algoritmos de control complejo
 - Almacenamiento sencillo y robuesto de datos

- ...

- La tecnología electrónica digital se emplea para construir los computadores que ejecutan software

Introducción Terminología digital

·Bit y múltiplos de bits

•Un **bit**: variable que vale 0 o 1.

Ejemplo: x = 1

•Un **nibble** (término poco usado): 4 bits.

Ejemplo: $x_3x_2x_1x_0 = 0 1 1 0$

•Un byte (octeto): 8 bits

Ejemplo: $x_7x_6x_5x_4$ $x_3x_2x_1x_0 = 1011 0111$

•Una palabra (word): "n" bits.

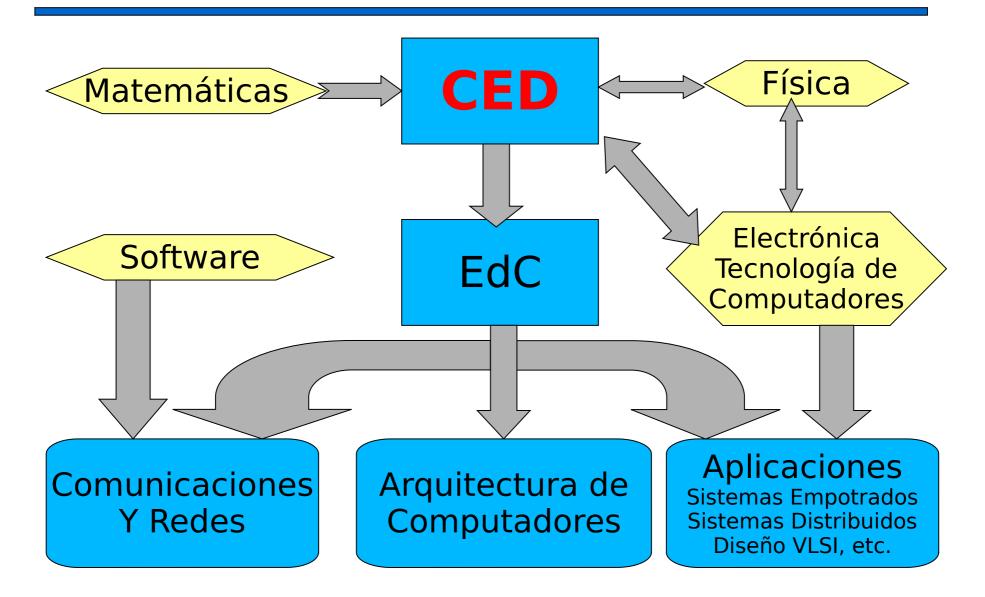
Ejemplo: $x_{n-1}x_{n-2} \dots x_2x_1x_0 = 01 \dots 101$

- •MSB (Most Significant Bit) es el bit de la posición n-1, " x_{n-1} " En el ejemplo anterior: $x_{n-1} = 0$
- •LSB (Least Significant Bit) es el bit de la posición 0, " x_0 " En el ejemplo anterior: $x_0 = 1$

Informática (informatique: information automatique, Philippe Dreyfus, 1.962):

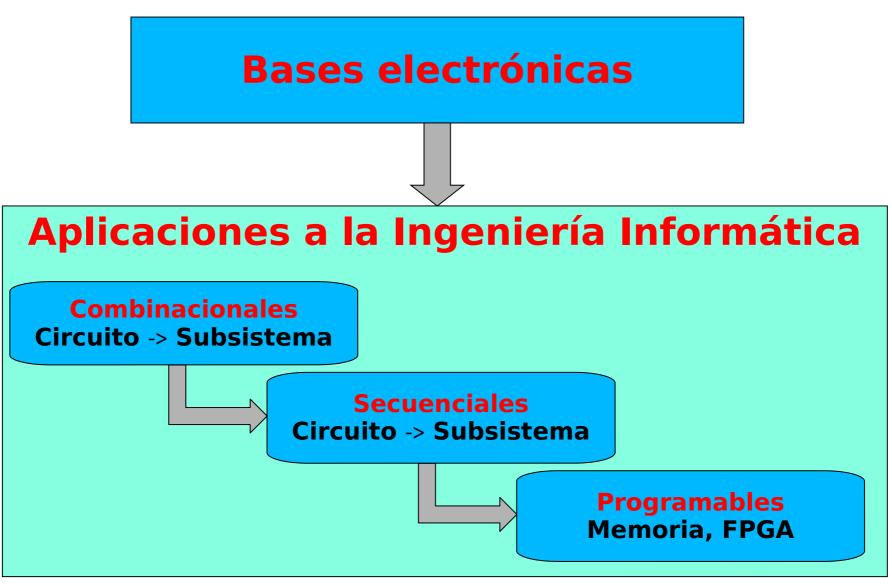
"conjunto de conocimientos científicos y técnicos que hacen posible el tratamiento automático de la información por medio de ordenadores"

Ordenador o computador:


Máquina electrónica digital que permite almacenar información y, a partir de unos datos de entrada, es capaz de procesarla automáticamente siguiendo una serie de operaciones previamente almacenadas en ella (programa).

-Hardware: Es el equipo físico (soporte material, maquinaria tangible). Realiza tareas de almacenamiento, procesamiento, comunicación y control del computador.

-Software: Es el conjunto o paquetes de programas y rutinas que dispone el computador para el tratamiento de la información. Es su parte inmaterial, que especifica las tareas a realizar y cómo hacerlas.



Introducción CED en el Grado de Informática

Introducción CED como asignatura

