
Prueba 1 Curso 2011/2012

ALUMNO:

- 1. Responda las siguientes cuestiones:
 - (a) Exprese 41.6₍₁₀₎ en base 2 (obtenga 4 cifras decimales).
 - Exprese +41.6 y -41.6 en notación complemento a 2 utilizando 8 bits para la parte entera y 3 para la parte fraccionaria. (2 puntos)
 - (b) Para el circuito de la figura, considerando que se ha alcanzado el estado estacionario, obtenga la intensidad que circula por cada rama, la tensión en cada nodo y la carga del condensador. (3 puntos)

- 2. Diseñe un circuito de 4 entradas y 4 salidas. Se trata de un multiplicador binario de dos palabras de 2 bits $(a_1a_0 \ y \ b_1b_0)$. Las salidas han de nombrarse: z_3 , z_2 , z_1 , y z_0 , siendo z_3 el bit más significativo y z_0 el menos significativo del producto. Se pide:
 - (a) el mapa de Karnaugh
 - la expresión de z₁ como producto de maxtérminos
 - la expresión mínima de z₁ como producto de sumas
 - la realización de z_1 mediante el circuito mínimo en dos niveles NOR (2 puntos)
 - (b) la realización de $\mathbf{z_2}$ mediante decodificador con salidas activas en bajo y NAND
 - la realización de z₁ mediante MUX 8:1 considerando doble raíl
 - la realización de z_0 con MUX 2:1 (2 puntos)
 - (c) determine si la siguiente descripción Verilog sería correcta para este multiplicador y justifique si se trata o no de una descripción estructural

```
module multi(
  input [1:0] a,
  input [1:0] b,
  output [3:0] z,
  );
  assign z = a · b;
  endmodule
(1 punto)
```