Última modificación: 20. Feb. 2017

Problema 1

Describa la función f= a' b + c d' en Verilog utilizando las tres descripciones posibles: funcional, estructural y procedimental.

Problema 2

Repita el ejercicio anterior para f= abc + a b'c' + a' b c'.

Problema 3

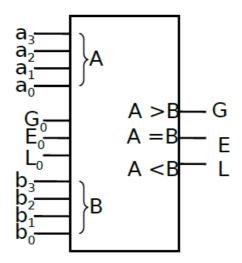
Describa en Verilog un decodificador de 3:8 con salidas activas en alto. Utilice descripción funcional y procedimental.

Problema 4

¿Qué modificaciones habría que realizar en el código Verilog del problema 3 para incorporar señal de habilitación activa en bajo? ¿Y para que las salidas sean también activas en bajo?

Problema 5

Se desea utilizar la descripción procedimental para implementar un codificador de prioridad de 4:2 que responda a la siguiente tabla de verdad.


Io	l ₁	I ₂	I ₃	Q_1	Q_{o}	E _o
0	1	1	1	0	0	0
X	0	1	1	0	1	0
X	X	0	1	1	0	0
X	X	X	0	1	1	0
1	1	1	1 1 1 0	0	0	1

Problema 6

Describa un convertidor BCD a 7-segmentos en Verilog.

Problema 7

Describa un comparador de magnitudes de 4 bits, como el que se muestra a continuación, utilizando una descripción procedimental.

Problema 8

Utilizando tanto las descripciones funcional como procedimental, escriba el código Verilog de un MUX 4:1

Problema 9

Describa en Verilog un sumador/restador de n bits.

Problema 10

Una ALU de 4 bits implementa las funciones que se recogen en la siguiente tabla. Escriba el código Verilog de dicha ALU.

S ₂ S ₁ S ₀	Función ALU	
	$C_{in} = 0$	C _{in} = 1
0 0 0	F = A	F = A + 1
0 0 1	F = A + B	F = A + B + 1
0 1 0	F = A + B'	F = A + B' + 1
0 1 1	F = A - 1	F = A
1 0 0	F = A AND B	
1 0 1	F = A OR B	
1 1 0	F = NOT A	
1 1 1	F = A XOR B	

Utilizando el módulo descrito en el problema 10, construya una ALU de 12 bits en Verilog utilizando la descripción estructural.

Problema 12

Describa en Verilog un registro de 8 bits con la siguiente tabla de operación.

CL LD	Operación	Tipo
0 x	REG ← 0	asíncrona
11	$REG \leftarrow X$	síncrona
10	REG ← REG	síncrona

Problema 13

Describa en Verilog un registro de desplazamiento con la siguiente tabla de operación.

CL SHR	Operación	Tipo
0 x	REG ← 0	asíncrona
11	$REG \leftarrow SHR(REG, X_{R})$	síncrona
10	REG ← REG	síncrona

Problema 14

Describa en Verilog un registro universal de 8 bits con las siguientes operaciones

CL LD SHR SHL	Operación	Tipo
0 x x x	REG ← 0	asínc.
11xx	REG ← X	sínc.
101x	REG ← SHR(REG, X_R)	sínc.
1001	$\begin{array}{c} REG \leftarrow \\ SHL(REG,X_{L}) \end{array}$	sínc.
1000	REG ← REG	sínc.

Problema 15

Describa un contador 4 bits con la siguiente tabla de operación.

CL	Operación	Tipo
1	CONT ← 0	asínc.
0	$ CONT \leftarrow CONT + 1 _{mod \ 16}$	sínc.

Problema 16

Describa un contador de 4 bits con la siguiente tabla de operación y salida de Cy.

CL EN	Operación	Tipo
1 x	CONT ← 0	sínc.
01	$CONT \leftarrow CONT + 1 _{mod \ 16}$	sínc.
0 0	CONT ← CONT	sínc.

Problema 17

Escriba el código Verilog de un contador módulo-16 con la siguiente tabla de operación.

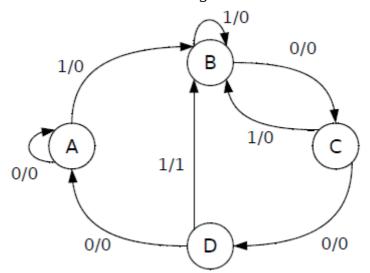
LD EN	Operación	Tipo
1 x	CONT ← X	sínc.
0 1	$CONT \leftarrow CONT + 1 _{mod \ 16}$	sínc.
0.0	CONT ← CONT	sínc.

Problema 18

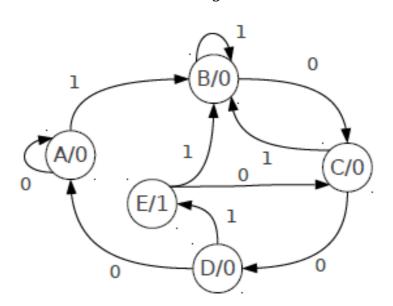
Escriba el código Verilog de un contador módulo-10.

EN	Operación	Tipo
1	$CONT \leftarrow CONT+1 _{mod\ 10}$	sínc.
0	CONT ← CONT	sínc.

Problema 19


Describa un contador descendente de n bits con salida de borrow.

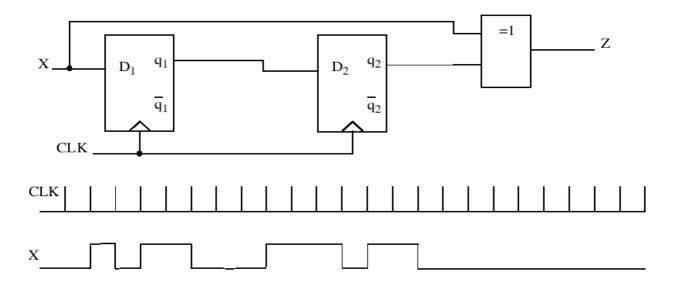
CL EN	Operación	Tipo
1 x	CONT ← 0	sínc.
0 1	CONT ← CONT-1 _{mod 16}	sínc.
0 0	CONT ← CONT	sínc.


Problema 20Describa un contador reversible de 4 bits con la siguiente tabla de operación.

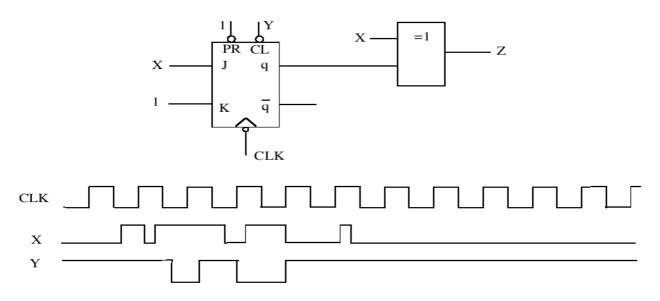
CL EN UD	Operación	Tipo
1 x x	CONT ← 0	asínc.
0 0 x	CONT ← CONT	sínc.
0 1 0	$CONT \leftarrow CONT+1 _{mod\ 16}$	sínc.
0 1 1	$CONT \leftarrow CONT-1 _{mod\ 16}$	sínc.

Describa la siguiente FSM usando Verilog.

Problema 22Describa la siguiente FSM usando Verilog

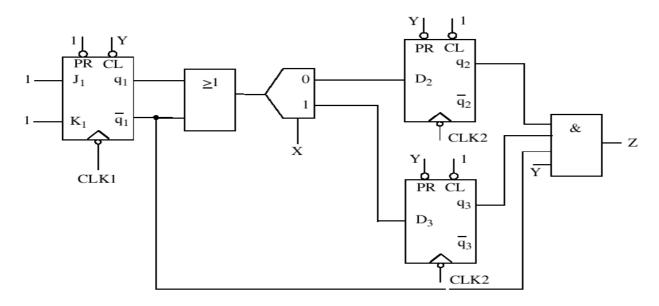


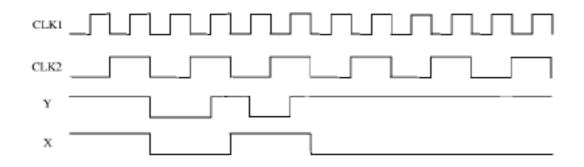
Problema 23


Describa la siguiente FSM usando Verilog

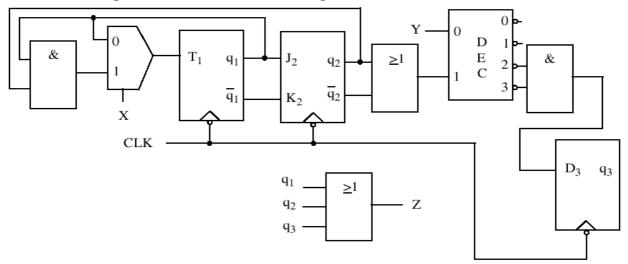
s ^X	0	1	
E_0	E ₀ ,00	E ₁ ,00	
E_1	E ₂ ,00	E ₁ ,01	
E_2	E ₂ ,10	E ₃ ,10	
E_3	$E_0,10$	E ₃ ,11	
,	NS, Y,Z		

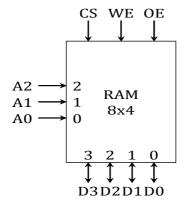
Problema 24 Describa el siguiente circuito utilizando código Verilog. Emplee descripción procedimental para los biestables y estructural para el conjunto. Obtenga la salida z para la secuencia de entrada que se muestra, para ello cree el fichero de test que permita su simulación.




Repita el ejercicio anterior para el siguiente esquemático.

Problema 26


Describa en Verilog el siguiente circuito y obtenga el fichero de test necesario para su simulación, utilizando las secuencias de entradas que se muestran en la figura.



Problema 27

Describa el siguiente circuito en Verilog.

Problema 28 Describa la siguiente RAM en Verilog

Indique qué dispositivo se describe a continuación y de su tabla de verdad.