
 The    Microelectronics 
 Training 
 Center 
 

The MTC is an initiative within the INVOMEC division 

 Industrialization & 
 Training in 
 Microelectronics 
 
 
 
 
 
 
 
 
 
 

Lab-exerc ise 

This material was developed with support of the European Social Fund. 
ESF: Prevent and combat unemployment by promoting employability, 

entrepreneurship, adaptability and equal opportunities between women and men, and 
by investment in people. 

http://www.esf-agentschap.be  
 

For Academic Use Only 
 

IMEC2005 www.mtc-online.be  

Lab 4: 
Testbench ALU 

 
 

Cluster: Cluster1 
Module: Module2b 

Target group: Students 
 
Version: 1.1 
Date: 13/12/06 
Author: Osman Allam 
Modified by: Geert Vanwijnsberghe 
History : minimal change 

The Microelectronics Training Center 

 

For Academic Use Only 
 

Lab4Mod2bV1.1_E.doc www.mtc-online.be 2/6 

 

� � �� � ��� � � 	 � �

 
A full testbench forces the inputs of the Unit Under Test (UUT) with simulation patterns and 
reads its outputs and compares them against a set of expected outputs.  
 
In this module, you create a full testbench for the ALU you’ve designed in the previous module. 
 

ALU

Testbench

B

A

shiftCntSource

shiftCnt

sel

result

neg

ovr

zro

11001
00101
10010

Test vectors

Test vectors file

 
 ��
 � � �� ��� � � �� � � ��� �

 
 � � � � � 	"!  #

 
After completing this module, You should be able to: 

• Read files using TEXTIO procedures 
• Convert from one type to another in VHDL 
• Verify the behavior of a relatively complex combinational logic block 

 $ � � % & �'  �( � )' � �� � �

 
• Understanding of binary representation of numbers 
• Understanding of arithmetic and logical operations on binary operands 
• Basic knowledge of VHDL 

 * & ( # # 	+ 	 �( � 	 � �

 
• Level: 3 
• Duration: 90 minutes 

 



The Microelectronics Training Center 

 

For Academic Use Only 
 

Lab4Mod2bV1.1_E.doc www.mtc-online.be 3/6 

� �� � �

 
A VHDL template for the testbench is provided along with some test vectors.  
 � � & ( �

 
Reading from a file: 
STD. TEXTI O and I EEE. STD_LOGI C_TEXTI O packages provide a means to enable reading 
and write formatted text files. 
In order to read a file, you first OPEN a FILE of TEXT file type and specify the open kind to be 
READ_MODE. You also need to specify the file name. 
 
f i l e my_f i l e :  t ext  open r ead_mode i s " f i l e_name. ext " ;  

  �

 

�� ��� 	 
� �� 
�� � ��� �� � 
� � � � 
 � � � � � � ��� � � � � �� � � � ��� �� � � � � � � � � � � � �� �� �� �� � � � � � � � �� �
 �� �� ��� ���

 
Reading information from a file is achieved by reading its contents line by line and extracting the 
information from each individual line. To read lines from the file, you need to declare a variable 
of type LINE. To extract information from the lines, you need to declare a (set of) variable(s) of 
the same type as the information you wish to extract.  
 
Example 
To read an integer followed by a bit from a line, you declare 3 variables: a line, an integer and a 
bit. 
 
var i abl e my_l i ne    :  l i ne;  
var i abl e my_i nt eger  :  i nt eger ;  
var i abl e my_bi t      :  bi t ;  
… 
r eadl i ne ( my_f i l e,  my_l i ne) ;  - -  r eadi ng t he l i ne 
r ead ( my_l i ne,  my_i nt eger ) ;   - -  ext r act i ng ( r eadi ng)  t he i nt eger  
r ead ( my_l i ne,  my_bi t ) ;       - -  ext r act i ng ( r eadi ng)  t he bi t  

 
Assertion statements 
An assert statement checks if a specified condition is true and reports an error if it is not. 
 
Asser t  <condi t i on>  
  r epor t  <message>  
  sever i t y <sever i t y_l evel >;    

 
The condition is a boolean expression. 
 
The report message can be any expression of type String. In case the report message is 
omitted, the message “assertion violation” is used by default. 
 
The severity level determines the behavior of the simulator when an assertion is violated. The 
default severity level is ERROR. 
 
Assertion statements can be used in testbenches to report the result of comparing the UUT’s 
outputs against the expected outputs. 
 

The Microelectronics Training Center 

 

For Academic Use Only 
 

Lab4Mod2bV1.1_E.doc www.mtc-online.be 4/6 

Example: to verify the output “neg” of the ALU. Assume that you have already read the expected 
value from the test vectors file into the variable “neg_v”. You can use an assertion statement like 
the one below: 
 
Asser t  ( neg = neg_v)   
  Repor t  “ NEG doesn’ t  mat ch expect ed val ue”  
  Sever i t y ERROR;  

 
You can have more detailed messages printed. For instance: 
 
NEG ‘ 1’  doesn’ t  mat ch expect ed val ue ‘ 0’  at  t est vect or  17 

 
For printing such messages, you use the ‘ i mage( )  attribute to convert a st d_l ogi c  or 
i nt eger  into a st r i ng literal. The ‘ i mage( )  attribute takes a prefix scalar type or subtype 
and a parameter of the specified type or subtype. 
 
T’ i mage( x)  

 
The above example can be rewritten as 
 
Var i abl e vect or  :  nat ur al ;  - -  number  of  cur r ent  t est vect or  
….  
asser t  ( neg = neg_v)  
  r epor t  “ NEG ”  & st d_l ogi c ’ i mage ( neg)  & “ doesn’ t  mat ch 
    expect ed val ue “  & st d_l ogi c ’ i mage ( neg_v)  & “ at  
    t est vect or  “  & nat ur al ’ i mage ( vect or )  
  sever i t y ERROR;  

 
Note: using the ‘ i mage( )  attribute with composite data types is not possible. You need to apply 
the attribute to each element of the parameter, for instance in a loop for array types, provided 
that the elements are of scalar types or subtypes. 
  
Full testbench 
Create a full testbench for the ALU you have designed in the previous module. The testbench 
uses STD. TEXTI O and I EEE. STD_LOGI C_TEXTI O procedures to read test vectors (stimuli + 
expected outputs) from a text file. 
 
Testvector files are formatted text files. Each line is composed of a set of fields. Each field is 
either a stimulus or an expected value of the output. The fields are arranged in the same order 
throughout the file and are separated by white spaces. Below is a snapshot of how your 
testvector file should look like. 
 
001 0 0 00000 00000 0 0 0 0 0 1 
002 0 0 00000 00000 0 0 1 0 0 1 
003 30 150 00000 00000 0 180 1 0 0 0 
004 - 30 150 00000 00000 0 120 1 0 0 0 
005 - 150 30 00000 00000 0 - 120 1 1 0 0 
006 30 - 150 00000 00000 0 - 120 1 1 0 0 
007 150 - 30 00000 00000 0 120 1 0 0 0 
You may want to add comments and headers in the testvector file. Your VHDL code must be 
able to recognize and effectively ignore them. 
 �

 

� �� �� �� � � �� � � � � � � � 
 � � � � � � � �� � � � 
 � � � � �� � 
 �! �� � �� ! � � �� � � � � � � � �� ��� � �� 
 � � ��� � � �� � � � � � �� � ��� � 
 � � ��



The Microelectronics Training Center 

 

For Academic Use Only 
 

Lab4Mod2bV1.1_E.doc www.mtc-online.be 5/6 

 
A full testbench for a combinational logic block can be accommodated in a single process as 
shown in the figure below. 
 

ALU

Testbench

B

A

shiftCntSource

shiftCnt

sel

result

neg

ovr

zro

11001
00101
10010

Test vectors

Test vectors file

 
 �� 
 � � �� ��� � � � � � � �� � �

 
For readability, it is recommended to use the port names of the UUT for the signals that connect 
it to the testbench. The names of the variables into which you read the testvector should also be 
derived from the signal names by appending for instance “_v ” to the signal name.  
 
Example: 
One of the ALU  ports is “result”. You declare the signal “r esul t ” to connect that port to the 
testbench. The variable “r esul t _v ” reads the expected value of the result. 
 
The function ENDFI LE returns TRUE when the end of the file is reached. 
 
Funct i on endf i l e ( f i l e F:  FT)  r et ur n bool ean;  

 
Your testbench loops as long as the end of the file has not been reached. Inside the loop, you 
read a line, extract the testvectors, apply stimuli and compare the outputs after some delay. The 
delay_time delay is optional for simulating behavioral models but it is necessary when simulating 
synthesized models because the actual circuits exhibit propagation delays. The delay 
offset_time is the time gap between the application of each testvector. 
 
The wait statement at the end of the process causes it to wait forever. This is called “event 
starvation” and it stops the simulator. 
 
You can use the template provided in the file cpu_t b. vhd as guideline for your testbench.  
 
To run the testbench, do the following: 

1. Compile the packages micro_pk and micro_comp_pk. 
2. Compile the ALU design. 
3. Compile the ALU testbench (after completing it). 
4. Load the ALU testbench in ModelSim. 

5. Run the testbench to the end using the command r un –al l  or pressing the button  
in ModelSim toolbar. 

 

The Microelectronics Training Center 

 

For Academic Use Only 
 

Lab4Mod2bV1.1_E.doc www.mtc-online.be 6/6 

Example: 
 
vl i b wor k 
# Compi l e 
vcom mi cr o_pk. vhd  
vcom mi cr o_comp_pk. vhd 
vcom al u. vhd 
vcom t b_al u. vhd 
# Load 
vsi m t b_al u 
# Run 
r un - al l  

 
Entity testbench is
  -- Empty entity
end entity;

architecture test of testbench is

declare signals to connect the UUT

begin

Instatiate the UUT

end architecture;

declare variables for reading the
testvectors

Testbench process
process

begin

while not endfile (testVectorFile)
loop

reading testvectors

applying stimuli

comparing outputs

wait for delay_time;

wait for offset_time;

end process;

end loop;

wait; -- wait for ever

 
 
 


