
 The Microelectronics
 Training
 Center

The MTC is an initiative within the INVOMEC division

 Industrialization &
 Training in
 Microelectronics

Lab-exerc ise

This material was developed with support of the European Social Fund.
ESF: Prevent and combat unemployment by promoting employability,

entrepreneurship, adaptability and equal opportunities between women and men, and
by investment in people.

http://www.esf-agentschap.be

For Academic Use Only

IMEC2005 www.mtc-online.be

Lab 4:
Design of t h e d ec od e fu nc t ion

insid e t h e c ont r ol u nit

Cluster: Cluster1
Module: Module4a

Target group: Students

Version: 1.0
Date: 18/12/06
Author: Osman Allam
Modified by: Geert Vanwijnsberghe
History : figures added and modified

The Microelectronics Training Center

For Academic Use Only

Lab4Mod4aV1.1_E.doc www.mtc-online.be 2/7

 � � �� � ��� � � 	 � �

The Control Unit of Micro6 is split into 3 sub-units: Fetch Unit, Decode Unit and Execute Unit.
Splitting the control unit in this way makes the code easier to understand and debug.

 ��
 � � �� �� �� � � � �� � ��
 � �

 � � �� � � 	�� � �

After completing this module, you should be able to:

• Use record data types
• Describe decoding functionality

 � � ! "� �# � �$ � %# � �� � �

• Basic VHDL knowledge
• Understanding of the operation of control units within any computer system

 & " $ � � 	' 	 �$ � 	 � �

• Level: 3
• Duration: 2 hours

 � �(� �

VHDL template
) *� " $ �

The Microelectronics Training Center

For Academic Use Only

Lab4Mod4aV1.1_E.doc www.mtc-online.be 3/7

The basic communication between control unit and fetch unit uses a kind of handshake
mechanism allowing both units to run as independently as possible.
When the fetch unit has received a ReadInstr pulse from the control unit it will start reading the
next instruction from the memory while de-asserting the vldInstr signal. After the instruction is
received by the fetch unit the vldInstr signal is asserted until a new ReadInstr pulse is given by
control unit.

 ��
 � � � � � �� � � � � � �� �� �� � �� � �

The control unit consists of a large FSM but the basic structure for an instruction group gx is
show in figure 3. The “Reading” and the “Decoding” states are only “on” for 1 clock cycle and the
ReadInstr signal is asserted while the FSM is in the “Reading” state. You can see that the FSM
goes to an idle ste (= stall) when for some reason the next instruction is not yet available from
the fetch unit.

 ��
 � � �

In one of the next modules we will have a closer look at the control unit and its state machine.

In this module, you will design the Decode function of the microprocessor as a single VHDL
function in the micro_control_pk package. Figure 2 shows where this function is located in
the control unit.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod4aV1.1_E.doc www.mtc-online.be 4/7

Before we proceed with writing the decode function, we would like to demonstrate a couple of
VHDL features that will greatly help you accomplish your task.

�	
� �

� �� �� � 	 �

If your design contains many signals that you are no longer able to interprete your code easily, it
might be helpful if you group these signals in records. Signals may be grouped according to their
functionality and/or direction. Grouping signals in records provides two advantages:

1. Improving readability.
2. Facilitating adding and removing ports.

type <new_type> is record
 <signal1> : <signal1_type>;
 <signal2> : <signal2_type>;
 <signal3> : <signal3_type>;
 ..
end record;

Note that signals belonging to records can be of any data type including records as well.

� �� � � 	 �

An alias of a data object (signal, variable, constant, … etc) provides an alternate identifier to
refer to that object. Aliases can be used in different ways but in this module, we are interested in
using aliases to denote elements or slices of arrays.

alias <identifier> : <data_type> is <array_data (<element>)>;

alias <identifier> : <data_type> is <array_data (<slice>)>;

Example: the opcode is the most significant 5 bits of the instruction word (32-bits). We can
express this information by declaring an alias.

alias opcode : std_logic_vector (4 downto 0) is instrWord (31
downto 27);

� � 	 �
� � 	

1. Start writing the package micro_control_pk with declaring 2 record types, 1 for the
decode bundle and 1 for the execute bundle (look at table below).

Signal name Type Range Decode
bundle

Execute
bundle

instrGroup instrGroup_t NA �

Asel std_logic_vector 4:0 �

�

Bsel std_logic_vector 4:0 �

�

Csel std_logic_vector 4:0 �

�

ALUsel alu_op NA �

�

shiftCnt std_logic_vector 4:0 �

The Microelectronics Training Center

For Academic Use Only

Lab4Mod4aV1.1_E.doc www.mtc-online.be 5/7

shiftCntSrc std_logic �

portAsel std_logic �

portBsel std_logic �

CFen std_logic �

�

STKen std_logic �

DATAsel std_logic_vector 1:0 �

�

MBRsel std_logic �

�

memAddr std_logic_vector 15:0 �

RegFileWr std_logic �

stkInc std_logic �

stkDec std_logic �

ACCen std_logic �

MARen std_logic �

MBRen std_logic �

PCen std_logic �

IRen std_logic �

STKpop std_logic �

STKpush std_logic �

memRd std_logic �

memWr std_logic �

 �

�� � ��� � � �	 �
 � 	 � � ��
 �� �� �	 �� �� � � � � 	 � � �� � � � � �� � �� � � � � 	 � � �� �	 � � � � �� � 	 �� � 	 � � ���
 � � � � � � 	 � � � �	 �� �� �	 � �� � �� � � � � �� 	 � � � � �� � �� �� �� � � �� �	 � � �� �� � � � � � � �

� � � � � � � � � 	 � � � � � � � �� � � �� � �	 � � � �	 � � � 	 � � �� � � � � !� � � � � � �� � �� � �� �� � �� �� �� � � " � �

	 � � � � 	 � � �

Note that some signals belong to both the decode bundle and the execute bundle. These signals
are initialized by the decode unit and appear as default values in the execute unit state machine.
The execute unit may update (change) the values of these signals.

2. Design the function decodeInstr (decode instruction) which takes an instruction word
(instReg) from the fetch unit and an indication whether the branch condition is true
(cTrue) and returns the decode bundle. In the declarative part of the function, declare
aliases for all fields of the instruction formats.

 �

 cTrue

� � � � � � � � �� � � � � �	 � � � � �	 � � �� � �� � �� � � � � 	 � �� � �� �	 � � � 	 � � � � �� � � � � � � � �

� � � � � �� � � �� � � � �� � � 	 �� �� �

Micro6 supports 3 different instruction formats:

Format1

#$ #% &' &(&) &* &+ &, & # & & &$ &% $ ' $ ($) $ * $ + $, $ # $ & $ $ $ % ' () * + , # & $ %

-./ -01 23 4 0 / 56 7 8 /

99
::

;9
::

<=
>?

@:

The Microelectronics Training Center

For Academic Use Only

Lab4Mod4aV1.1_E.doc www.mtc-online.be 6/7

Format2 #$ #% &' &(&) &* &+ &, & # & & &$ &% $ ' $ ($) $ * $ + $, $ # $ & $ $ $ % ' () * + , # & $ %

-./ -0 1 . 7A1 B% 70 0C 1 4 4

/ B D 7 4E 46

Format3 #$ #% &' &(&) &* &+ &, & # & & &$ &% $ ' $ ($) $ * $ + $, $ # $ & $ $ $ % ' () * + , # & $ %

-./ -0 1 . 7A1 B% 70 0C 1 4 4

/

Field Description
OPCODE Opcode
IX Index register
S Shift count source
D Shift direction
CNT Shift count
AACC ALU port A is ACC (Accumulator)
BACC ALU port B is ACC (Accumulator)
StoreC Store the result in C
A Register file port A selection lines
B Register file port B selection lines
C Register file input port selection lines
Page-0 address Address of a location in the first memory page
C-MASK Condition mask
ST Enable stack

a. Use aliases to describe instruction formats.

The operation of the decode unit can be split into 2 steps:

1. Decoding the opcode of the instruction;
2. Extracting the instruction parameters (for example, references to its operands).

The decode unit of Micro6 is described in VHDL by two case statements. The first one (case_1)
is compact in the sense that a single choice of the case expression may correspond to more
than 1 opcode. This case statement generates two outputs only.
Each case choice of the second case statement (case_2) corresponds to a single opcode. This
case statement generates all other outputs. See the figure below.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod4aV1.1_E.doc www.mtc-online.be 7/7

case_1

case_2
shiftCntSrc

instrGroup

CFen

Asel

Bsel

Csel

ALUsel

shiftCnt

portAsel

portBsel

STKen

DATAsel

MBRsel

memAddr

instReg

For simplicity and ease of debug you may consider writing the default values of some of the
signals of the decode bundle. Some values do not change in the case statement, those values
are default values. This is already done for you in the VHDL template. Recall that not all
parameters are relevant to all instructions, and the execute unit ignores all irrelevant information.
This fact gives your more freedom when assigning default values.

b. Write the code of the first case statement (case_1) using the provided template.

Use the template provided in the file micro_control_pk.vhd.

Complete this code and compile. No testbench is given to verify this package.

