
 The    Microelectronics 
 Training 
 Center 
 

The MTC is an initiative within the INVOMEC division 

 Industrialization & 
 Training in 
 Microelectronics 
 
 
 
 
 
 
 
 
 
 

Lab-exerc ise 

This material was developed with support of the European Social Fund. 
ESF: Prevent and combat unemployment by promoting employability, 

entrepreneurship, adaptability and equal opportunities between women and men, and 
by investment in people. 

http://www.esf-agentschap.be  
 

For Academic Use Only 
 

IMEC2005 www.mtc-online.be  

Lab 4: 
VHDL basics: registers 

 
 

Cluster: Cluster1 
Module: Module1b 

Target group: Students 
 
Version: 1.0 
Date: 21/03/06 
Author: Osman Allam 
Modified by: Geert Vanwijnsberghe 
History : 1/12/06 : testbench added 
 

The Microelectronics Training Center 

 

For Academic Use Only 
 

Lab4Mod1bV1.1_E.doc www.mtc-online.be 2/4 

 

� � �� � ��� � � 	 � �

 
The D-flip-flop is the elementary building block of all sequential circuits. Aggregations of D-flip-
flops build registers. You will need several registers in your design to hold intermediate data. 
However, more registers will be inferred when synthesizing other sequential circuits which you 
will write in a higher level of abstraction. 
 

 
 
 � �
 � � 	�� 
 �

 
After completing this module, you will be able to: 

• Design elementary sequential circuits 
 � � � � �
 �� 
 �� � �� � �� � �

 
• Basic VHDL knowledge 

 � � � � � 	� 	 �� � 	 � �

 
• Level: 1 
• Duration: 15 minutes 

 
 � �� � �

 
VHDL template 
 



The Microelectronics Training Center 

 

For Academic Use Only 
 

Lab4Mod1bV1.1_E.doc www.mtc-online.be 3/4 

� �
 � � �

 
Sequential circuits can be modeled in VHDL as processes with sensitivity lists or wait 
expressions. Since many synthesis tools do not support wait expressions, we limit our 
discussion on processes with sensitivity lists.  
 
The behavior and the synthesized circuit depend greatly on the signals that are in the sensitivity 
list. Careful selection of these signals is necessary. The behavior depends also on the order of 
sequential assignments within the process.  
 
In your design you will need registers with one control input, the enable port. Resetting the 
registers with dedicated reset input is not necessary because some registers are reset by 
loading them with zeros during the reset sequence of the microprocessor after it is powered on. 
Other registers don’t need to be reset because their contents are not used before they have 
been loaded with valid data. 
 
There are two ways for writing a VHDL model for registers that can be re-used  in different sizes: 
 

1. Using generics: the register size is determined by the value of the generic which can be 
assigned at instantiation. You can give generics default values. 

 
Ent i t y r egi st er _en i s 
  Gener i c ( s i ze :  posi t i ve : = 8) ;  – def aul t  si ze i s 8 
  Por t  (  
    r st  :  i n st d_l ogi c;  
    c l k :  i n st d_l ogi c;  
    en  :  i n st d_l ogi c;  
    d   :  i n st d_l ogi c_vect or  ( si ze – 1 downt o 0) ;  
    q   :  out  st d_l ogi c_Vect or  ( s i ze – 1 downt o 0) ) ;  
End ent i t y;  

 
2. Using unconstrained ports: the register size is automatically determined at instantiation 

by the width of the input and output signals connected to it.  
 

Ent i t y r egi st er _en i s 
  Por t  (  
    r st  :  i n st d_l ogi c;  
    c l k :  i n st d_l ogi c;  
    en  :  i n st d_l ogi c;  
    d   :  i n st d_l ogi c_vect or ;   - -  unconst r ai ned vect or  
    q   :  out  st d_l ogi c_Vect or ) ; - -  unconst r ai ned vect or  
End ent i t y;  

 
Design a register with synchronous enable and asynchronous reset signal. The width of the 
register is unconstrained. 
Use the entity declaration given in the file r egi st er _en. vhd 
 
 

The Microelectronics Training Center 

 

For Academic Use Only 
 

Lab4Mod1bV1.1_E.doc www.mtc-online.be 4/4 

QD

en

clk

rst

 � ��� � � �	 � �� �
 � � �
 
 

 � � �� � � �	 � �� �
 � � �
 �� � �� � �

A testbench file tb_register_en.vhd is given to allow you to verify your register_en 
entity/architecture. 
Compile and simulate your code. 


