
 The Microelectronics
 Training
 Center

The MTC is an initiative within the INVOMEC division

 Industrialization &
 Training in
 Microelectronics

Lab-exerc ise

This material was developed with support of the European Social Fund.
ESF: Prevent and combat unemployment by promoting employability,

entrepreneurship, adaptability and equal opportunities between women and men, and
by investment in people.

http://www.esf-agentschap.be

For Academic Use Only

IMEC2005 www.mtc-online.be

Lab 4 :
VHDL basics: counters

Cluster: Cluster1
Module: Module1c

Target group: Students

Version: 1.1
Date: 31/03/06
Author: Osman Allam
Modified by: Geert Vanwijnsberghe
History : Testbenches added

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1cV1.1_E.doc www.mtc-online.be 2/5

� � �� � ��� � � 	 � �

Micro6 contains 4 counters; the program counter and the memory-stack pointers.

The program counter (PC) in the microprocessor is implemented as an up-counter. The count
increment is constant because all instructions occupy the same number of memory locations.

The 3 memory-stack pointers inside the register file are updown counters.

 ��
 � � �� �� �� � � � �� � ��
 � �

 � � �� � � 	�� � �

After completing this module you will be able to design elementary sequential circuits
 � � ! "� �# � �$ � %# � �� � �

Basic VHDL knowledge
 & " $ � � 	' 	 �$ � 	 � �

• Level: 1
• Duration: 30 minutes

 � �(� �

• VHDL template of the up counter (count er . vhd).
• VHDL template of the updown counter (count er _updown. vhd).

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1cV1.1_E.doc www.mtc-online.be 3/5

 � �� " $ �

 � �� �� � �	

In this exercise, you design an up-counter. The contents of the counter are incremented by one
on the rising edge of the clock if the increment input is asserted. Provide a means to load new
data into the counter. In case both the increment and the load control lines are asserted
simultaneously, one of them has to be assigned priority over the other to determine the behavior
of the counter.

There are two ways for assigning priorities in VHDL

1. Priority
This is modeled by if-elsif constructs.

I f (hi gh_pr i o_cont r ol = ‘ 1’) t hen
 - - i t s act i on
el s i f (2_hi gh_pr i o_cont r ol = ‘ 1’) t hen
 - - i t s act i on
…
el s i f (l ow_pr i o_cont r ol = ‘ 1’) t hen
 - - i t s act i on
end i f ;

It is implicit in the sense that in if-statements conditions are checked sequentially, if a
condition is true, the remaining conditions are not checked.

2. No priority

This is achieved by explicitly specifying an action for each possible combination of the
control inputs. This is modeled in VHDL using a case statement. This technique may
generate more complex logic in synthesis.

Example: 2 control inputs:

Si gnal ct r l : s t d_l ogi c_vect or ; - - decl ar e a s i gnal
…
Case st d_l ogi c_vect or ’ (c1 & c2) i s
 When “ 00” => - - act i on when not hi ng i s asser t ed
 When “ 01” => - - act i on when c2 i s asser t ed
 When “ 10” => - - act i on when c1 i s asser t ed
 When “ 11” => - - act i on when bot h ar e asser t ed
 When ot her s => - - act i on i n case of met a val ues
End case;
Note: c1 and c2 are of type std_logic.

You can think of other ways to resolve conflicting control actions!

There are two ways to write a VHDL model for counters that can be re-used in different
sizes.
1. Using generics: the counter size is determined by the value of the generic, which can be

assigned at instantiation. You can give generics default values.

Increased area
and longer delays

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1cV1.1_E.doc www.mtc-online.be 4/5

Ent i t y count er i s
 Gener i c (s i ze : posi t i ve : = 8) ; – def aul t si ze i s 8
 Por t (
 r st : i n st d_l ogi c;
 Cl k : i n st d_l ogi c;
 l d : i n st d_l ogi c;
 i nc : i n st d_l ogi c;
 D : i n st d_l ogi c_vect or (si ze – 1 downt o 0) ;
 Q : out st d_l ogi c_Vect or (s i ze – 1 downt o 0)) ;
End ent i t y;

2. Using unconstrained ports: the counter size is automatically determined at instantiation

by the width of the input and output signals connected to it.

Ent i t y count er _en i s
 Por t (
 r st : i n st d_l ogi c;
 Cl k : i n st d_l ogi c;
 l d : i n st d_l ogi c;
 i nc : i n st d_l ogi c;
 D : i n st d_l ogi c_vect or ; - - unconst r ai ned vect or
 Q : out st d_l ogi c_Vect or) ; - - unconst r ai ned vect or
End ent i t y;

However, the width of any internal signals should match the width of the external interface
signals of the unit. This can be achieved by specifying the width of the internal signals in terms of
the width of the external interface signals by using the attribute ‘width or ‘range. For example:

Si gnal count _i nt : st d_l ogi c_vect or (D’ r ange) ;

Or

Si gnal count _i nt : st d_l ogi c_vect or (D’ wi dt h – 1 downt o 0) ;

 � � 	
 �
� 	� � � � � � � � 	

Design an up-counter with unconstrained width. The contents of the counter are incremented by
1 every clock cycle when the increment (inc) input is asserted. The counter is loaded with the
data on its inputs every clock cycle when the load (ld) input is asserted. The counter is reset
asynchronously by the signal (rst).
The waveforms below show the priorities of different control inputs. Use the implicit priority
method to describe the behavior of your counter.

 ��
 � � �� �� � � �� � � � �
 � � �
 �� � �

Use the template provided in the count er . vhd file.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1cV1.1_E.doc www.mtc-online.be 5/5

Investigate the testbench in the tb_counter.vhd file. You can see that an 8 bits wide counter is
instantiated and that the clock is generated as a concurrent procedure. The expected output is
stored in an array and verified in an extra process.
Compile and simulate the testbench. No errors should be logged.
 � �	
 �
 � 	� � � � � � � � � � � �	

Design an updown counter. The contents are incremented by 1 every clock cycle when the
increment (inc) input is asserted and they are decremented by 1 every clock cycle when the
decrement (dec) input is asserted. The counter is loaded with the data on its inputs every clock
cycle when the load (ld) input is asserted. The counter is reset asynchronously by the signal
(rst).

The waveforms below show the priorities of different control inputs. Use the implicit priority
method to describe the behavior of your counter.

 ��
 � � �� �� � � �� � � � �
 � � � � � � �
 �� � �

Use the template provided in the file count er _updown. vhd. Use t he t empl at e
t b_count er _updown. vhd t o cr eat e a t est bench f or a 9 bi t s updown
count er . Compi l e and s i mul at e. No errors should be logged.

