
1Texas A&M University

ECEN 449 – Microprocessor System Design

FPGAs and Reconfigurable Computing

Some of the notes for this course were developed using the course notes for
ECE 412 from the University of Illinois, Urbana-Champaign

2Texas A&M University

Objectives of this Lecture Unit

• Get a feel for the different technologies that can be used to
implement a design
– Flavors of hardware technologies
– Flavors of implementation methods

• Understand the basics of how FPGAs work
– So that the CAD tools in the lab make sense to you

3Texas A&M University

Software, Custom Hardware or Reconfigurable Hardware?

• When should we use software, “custom” hardware, or reconfigurable hardware?
• Software based systems are easiest to implement

– But there is a huge performance gap between software and hand-designed
(custom) hardware systems

– Often 100-to-1 ratio of performance (speed) or performance/area
• But custom hardware systems not so good for general computing

– Big design effort (time, cost) are barriers to implementation
– Not practical to buy a new machine every time you want to run a different

program
• Reconfigurable systems offer best-of-both-worlds

– Run-time programmability (in the field)
– Hardware-level performance (although lower than custom hardware)
– FPGAs and CPLDs are the vehicles for reconfigurable systems.

4Texas A&M University

Why is Hardware Faster Than Software?

• Spatial vs. Temporal Computation
– Processors divide computation across time, dedicated hardware

divides across space
– But dedicated hardware is hardwired for a specific task.

t1

t2

A

B

C

t1 = x
t2 = t1 * A
t2 = t2 + B
t2 = t2 * t1
y = t2 + C

Temporal Computation

* *

* +

+

x

A

B

C

Spatial Computation

y = Ax + Bx + C2

Y

5Texas A&M University

Why is Hardware Faster Than Software?

• Specialization:
– Instruction set may not provide the operations your program needs
– Processors provide hardware that may not be useful in every program

or in every cycle of a given program
• Multipliers
• Dividers

• Instruction Memory
– Processors need lots of memory to hold the instructions that make up

a program and to hold intermediate results.
• Bit Width Mismatches

– In general, processors have a fixed bit width, and all computations are
performed on that many bits

• Multimedia vector instructions (MMX) a response to this

6Texas A&M University

So why not just use Hardware?

• Dedicated hardware is
– Dedicated (not flexible)
– Takes long to design and develop (typical processor takes a handful of

years to design, with design teams of a few hundred engineers)
– This is expensive!
– Only way to justify such an effort is if the customer demand

guarantees high volume sales
• So there is a strong need for a design approach which has

performance comparable to dedicated hardware, with ease-of-
programmability comparable to software.

• Answer? Reconfigurable computing (FPGAs, CPLDs and their
cousins)

7Texas A&M University

Good Applications for Reconfigurable Computing

• Data Parallelism
– Execute same computations on many independent data elements
– Pipeline computations through the hardware

• Small and/or varying bit widths
– Take advantage of the ability to customize the size of operators

• Low-volume applications which require rapid design turn-around
time and hardware-like speeds
– Several telecom, DSP (filters), radar, genomics (DNA sequence

matching), processor emulation, neural network and similar
applications.

8Texas A&M University

Will FPGAs Defeat CPUs?

• Capacity: Instructions are very dense representation, logic blocks
aren’t

• Tools: Compilers for reconfigurable logic aren’t very good
– Some operations are hard to implement on FPGAs
– C-for-FPGA technology is improving fast, though

One approach to capacity is to exploit the 90-10 rule of software
– Run the 90% of code that takes 10% of execution time on a

conventional processor
– Run the 10% of code that takes 90% of execution time on

reconfigurable logic
• But the temptation to merge the two worlds is real

– Programmable-reconfigurable processors

9Texas A&M University

A Peek Under the Hood

• In the next few slides, we will peek under the hood of some of
competing hardware based digital system design platforms

• We will cover
– Application Specific ICs (ASICs).

• Examples are IP routing ICs
• SSI/MSI/LSI/VLSI

– Reconfigurable (also sometimes called programmable) ICs.
• Examples are FPGAs, CPLDs

– Full custom Integrated Circuits (ICs).
• Examples are processors, GPUs, network processors, DSP processors.

10Texas A&M University

• Very high capacity today -- 10-100M transistors
• Very high speed – 500MHz+

– Integration
– Specificity

• Can use any design style below (or a hybrid)
– Full Custom
– Standard-cell (synthesized) – dominating methodology due to

manufacturing considerations
• Long fabrication time

– Weeks-months from completed design to product
• Only economical for high-volume parts

– Making the masks required for fabrication is becoming very
expensive, in the order of $1M per design

Application Specific Integrated Circuits

11Texas A&M University

Deep Submicron Design Challenges

• This slide discusses why ASICs are becoming less popular in
recent times (compared to reconfigurable ICs)

• Physical effects are increasingly significant
– Parasitics, reliability issues, power management, process

variation, etc.
• Design complexity is high

– Multi-functionality integration
– Design verification is a major limitation on time-to-market

• Cost of fabrication facilities and mask making has increased
significantly

12Texas A&M University

Rapid Increase in Manufacturing Cost

Source: EETimes

$50
Process (um) 2.0 … 0.8 0.6 0.35 0.25 0.18 0.13 0.10

Single Mask
cost ($K) 1.5 1.5 2.5 4.5 7.5 12 40 60

of Masks 12 12 12 16 20 26 30 34

Mask Set cost
($K) 18 18 30 72 150 312 1,000 2,000

7.5
12

40

60

$0.0

$0.5

$1.0

$1.5

$2.0

$2.5

250nm 180nm 130nm 100nm

T
ot

al
 C

os
t

fo
r

M
as

k
Se

t (
$M

)

0

$10

$20

$30

$40

$60

C
os

t/M
as

k
($

K
)

13Texas A&M University

The Cost of Next Generation Product

Source:
IBS Inc.

Wireless chip case

Networking chip case

0.18um 0.13um 90nm

10

20

30

40

50

0.15

Total Product Cost ($M) $30M ~ $50M @ 90nm

Engineering Cost – 60% up

Manufacturing Cost – 40% up

NRE/Mask Cost – 100% up
Product

Cost

Respin cost – 78% up

14Texas A&M University

Programmable Logic Devices
• Early version: Mask-Programmable Gate Arrays

– Build standard layout of transistors on chip
– Customer specifies wiring to connect transistors into gates/system
– Only has to go through last few mask steps of fabrication process, so

faster than full chip fabrication
– May become popular again in the near future

• Newer version: Programmable Logic Devices (PLD)
– Use AND-OR array to implement arbitrary Boolean functions
– Programmed by burning fuses that define connection from input wires

to gates
– Customer site programming allows rapid prototyping
– Limited capacity, functionality

• Generally have to be used in conjunction with other parts to hold state
• Used to implement logic with moderate number of inputs (< 20)

15Texas A&M University

Programmable Logic Device Advantages

• Short TAT (total turnaround time)
• No or very low NRE (non-recurring engineering) costs.
• Field-reprogrammable
• Platform-based design

16Texas A&M University

Today - Two Major Types of Programmable Logic

• CPLD (complex programmable logic device)
– coarse-grained two-level AND-OR programmable logic arrays (PLAs)
– fast and more predictable delay
– simpler interconnect structures

• FPGA (field programmable gate array)
– fine-grained logic cells
– high logic density
– good design flexibility (field programmable), easy redesign (just reprogram

the chip!)
– arguably more popular

• Increasing ASIC design costs are making FPGAs more popular. This
technology is therefore important to learn about. Hence this course.
– Enables “garage” technology companies to thrive. This has a huge impact.

17Texas A&M University

Evolution of the FPGA
• Early FPGAs used mainly for “glue logic” between other components

– Simple CLBs, small number of inputs
– Focus was on implementing “random” logic efficiently

• As capacities grew, other applications emerged
– FPGAs as alternative to custom IC’s for entire applications
– Computing with FPGAs

• FPGAs have changed to meet new application demands
– Carry chains, better support for multi-bit operations
– Integrated memories, such as the block RAMs in the devices we’ll use
– Specialized units, such as multipliers, to implement functions that are

slow/inefficient in CLBs
– Newer devices incorporate entire CPUs: Xilinx Virtex II Pro has 1-4

Power PC CPUs (we will use such a device in our lab!!!)
• Devices that don’t have CPU hardware generally support synthesized

CPUs

18Texas A&M University

Full Custom ICs

• These have captured an important niche in hardware
implementation of systems

• Microprocessors, GPUs, network processors, DSP processors are
key examples.
– HIGH sale volume (required to justify huge development cost and

time)
– These are often the flagship products of many semiconductor

companies (Intel, IBM, AMD, TI, Freescale, etc)
– These designs are “custom” designed, to do a specific task extremely

fast, with minimum area and power.

19Texas A&M University

FPGAs in Detail

• Now in the next few slides, we will look at the technology that is
inside an FPGA IC.

• This will allow us to understand how the FPGA works
• After this, we will be able to make sense of the design flow that is

used to design a FPGA based circuit.

20Texas A&M University

Field-Programmable Gate Arrays

• Based on Configurable Logic Blocks (CLB)
CLB CLB CLB CLBCLB CLB CLB

CLB CLB CLB CLBCLB CLB CLB

CLB CLB CLB CLBCLB CLB CLB

CLB CLB CLB CLBCLB CLB CLB

CLB CLB CLB CLBCLB CLB CLB

CLB CLB CLB CLBCLB CLB CLB

CLB CLB CLB CLBCLB CLB CLB

21Texas A&M University

A Generic FPGA Architecture

Programmable
IO

K
LUTInputs D FF

Clock

Out

BLE
1

BLE# N

N
Outputs

I
Inputs

Clock

I

N

Programmable
Logic (CLB)

Programmable
Routing

22Texas A&M University

What’s in a CLB?

Look-Up
 Table
 (LUT)

State

OutInputs

Clock

Enable

23Texas A&M University

Xilinx CLB – a.k.a. “Slice”

24Texas A&M University

An Implementation of a 4-input Look-up Table (4-LUT)

Out = f (in0, in1, in2, in3)

In0 In1 In2 In3

Out

…

16
SRAMs

25Texas A&M University

Input-Output Blocks

• One IOB per FPGA pin
– Allows pin to be used as input, output, or bidirectional (tri-state)

• Inputs
– Direct
– Registered
– Drive dedicated decoder logic for address recognition

• IOB may also include logic for boundary scan (JTAG)

26Texas A&M University

Xilinx IOB

27Texas A&M University

Interconnect

• 2-Dimensional mesh of wires, with switching elements at wire
crossings to control routing
– Bit patterns stored into the switch FFs determine routing
– Switch connections programmed as part of configuring array

• To optimize for speed, many designs include multiple lengths of
wire
– Single-length (connect adjacent switches)
– Double-length (connect to switches two hops away)

• Long lines (run entire length/width of array)

28Texas A&M University

Interconnect Diagram

29Texas A&M University

One Commercial FPGA, Altera Stratix II

30Texas A&M University

Chip Shot - Xilinx Spartan-3 die image

• Note the regularity…

31Texas A&M University

Design Variables

• The following issues are something that the company which
designs the FPGA needs to worry about. The user of the FPGA is
agnostic to these issues.

• # of inputs to LUT
– Trade off number of CLBs required vs. size of CLB and routing area

• How is logic implemented
– Switch based? Gate based?
– SRAM configuration? Fuse burning configuration?

• Flip-flop in CLB?
• Additional Functionality

– Carry chains, CPU’s, block RAM files

32Texas A&M University

Design Flow for Programmable Logic

datapathcontroller

RTL design

RTL elaboration and
optimization

RTL
Synthesis

Architecture-independent
optimization

Technology mapping &
Architecture-specific

optimization
net list

Logic
Synthesis

Placement-driven
optimization& incremental

placement

Routing

Clustering & placement

Physical
Design

Bitstream generation1001110010…

33Texas A&M University

FPGAs – Pros (recap)

• Reasonably cheap at low volume
– Good for low-volume parts, more expensive than IC for high-volume

parts
– Can migrate from SRAM based to fuse based when volume ramps up

• Short Design Cycle
• Reprogrammable (~1sec programming time)

– Can download bug fix into units you’ve already shipped
• Large capacity (100 million gates or so, though we won’t use any

that big)
– FPGAs in the lab are “rated” at ~1M gates for 30K LE’s

• More flexible than PLDs -- can have internal state
• More compact than MSI/SSI

34Texas A&M University

FPGAs – Cons (recap)

• Lower capacity, speed and higher power consumption than building
an ASIC
– Sub-optimal mapping of logic into CLB’s – often 60% utilization
– Much lower clock frequency that max CLB max toggle rate – often

40%
– Less dense layout and placement and slower operation due to

programmability
• Overhead of configurable interconnect and logic blocks

• PLDs may be faster than FPGA for designs they can handle
• Need sophisticated tools to map design to FPGA. But the FPGA

vendor typically provides these tools (at a cost).

35Texas A&M University

FPGA Design Flow

• Now that we know what the circuit structure inside an FPGA is, lets
see how we go about programming an FPGA.

• In other words, we will briefly cover the steps that we undertake
between
– The conception of a design idea
– The decision-making step of whether an FPGA will be the correct

hardware platform for the design
– The design flow we follow to obtain an FPGA based hardware

realization of this design.

36Texas A&M University

From Concept to Circuit

• Need to specify your design and then implement it as a functioning
system

• Trade-offs between time/cost and efficiency
– Performance of final system
– Amount of silicon area required (manufacturing cost)
– Time to manufacture
– Power consumption

• Need to think about a number of factors to make decision
– Sales volume
– Profit margin and how performance affects it
– Time-to-market concerns, particularly if trying to be the first product

in a new area

37Texas A&M University

High-Level Design

• Problem 1: modern designs are just too complex to keep in your head at
one time

– Custom chips approaching 100M transistors
– FPGA designs approaching 1M gates

• Problem 2: Even if you could design complex systems by hand, it would take too
long

– 100M transistors at 10s/transistor = 133.5 person-years
– Transistor counts and system speed increasing at 50% or so/year
– Design time is critical

• # transistors per chip increasing at 50%/year
• # transistors per engineer-day increasing at 10%/year

• Need techniques that reduce the amount of human effort required to design
systems
– Let humans work at higher levels, rely on software to map to low-level designs

38Texas A&M University

Increasing Design Abstraction

• Old way: specify/layout each device by hand
– Early chips were laid out by cutting patterns in rubylith with knives

• Current State of the Art: Combination of synthesis and hand design
– Specify entire system in HDL (Verilog or VHDL), simulate, and test
– Use synthesis tools to convert non-performance-critical parts of the design to

transistors/gates
– Human designs critical components by hand for performance

• Where Things are Going: System-on-a-Chip Design
– Specify design out of high-level components (cores)
– Integrate sensors, transmitters, actuators, computers on a chip
– Rely very heavily on tools to map design to software and hardware.
– XUP (the board we will use in the lab) is an SoC design vehicle

39Texas A&M University

(FPGA) Design Flow

Design Entry

Implementation

Physical Device

Simulation

40Texas A&M University

Design Entry

Two main methods:

• Text entry (VHDL/Verilog):
– Compact format, no special tools required
– Good for high-level designs and control logic

• Schematic Capture: Draw pictorial representation of circuit, tool converts
into design (typically HDL description)
– Traditionally used for low-level (transistor) designs, regular structures
– Commonly used today in conjunction with text entry to provide visual

viewing of overall structure of a design

41Texas A&M University

Simulation

• Two types of HDL simulators
– Interpreted: runs slower but more versatile and no compilation time
– Compiled: runs faster but require compilation time and often not as versatile

partly due to needs to compile all library components used.
• Both typically use Discrete-Event techniques

– Divide time into discrete steps
• User can select time step to trade accuracy vs. run-time

– Keep lists of events that have to be resolved at each time step.
• At each time step, resolve all events for the time step and schedule events for

later time steps
• Output:

– Text from output/print statements in your design
– Errors from assert statements
– Waveform traces

• Like any testing, the key is having good tests. The designer creates these!

42Texas A&M University

Implementation of an FPGA Design

Going from simulated Verilog design to circuits

• 5 Phases
– Synthesis
– Timing Analysis
– Technology Mapping
– Place and Route
– Bitstream Generation

(Sometimes do additional timing analysis after place and route just to
make sure that the timing is good)

43Texas A&M University

Synthesis

Transforms program-like VHDL into hardware design (netlist)
• Inputs

– HDL description
– Timing constraints (When outputs need to be ready, when inputs will

be ready, data to estimate wire delay)
– Technology to map to (list of available blocks and their size/timing

information)
– Information about design priorities (area vs. speed)

For big designs, will typically break into modules and synthesize each
module separately
– 10K gates/module was reasonable size 5 years ago, tools can 50-100K

gates now

44Texas A&M University

Timing Analysis

Static timing analysis is the most commonly-used approach
• Calculate delay from each input to each output of all devices
• Add up delays along each path through circuit to get critical path
• Works as long as no cycles in circuit

– Tools let you break cycles at registers to handle feedback
• Also, ignores false paths in the design.

• Trade off some accuracy for run time
– Simulation tools like SPICE will give more accurate numbers, but

take much longer to run
• If the netlist passes timing analysis tests, we proceed further

45Texas A&M University

Technology Mapping

• Technology mapping converts a given Boolean circuit (a netlist)
into a functionally equivalent network comprised only of LUTs or
PLAs
– Basically, can divide logic into n-input functions, map each onto a

CLB.
• Technology mapping is a crucial optimization step in the

programmable logic design flow
• Direct impact on

– Delay (number of levels of logic)
– area/power (number of LUTs or PLAs)
– Interconnects (number of edges)

• Harder problem: Placing blocks to minimize communication,
particularly when using carry chains

46Texas A&M University

Place and Route

Synthesis generates netlist -- list of devices and how they’re
interconnected

Place and route determines how to put those devices on a chip and
how to lay out wires that connect them

Results not as good as you’d like -- 40-60% utilization of devices and
wires is typical for FGPA
– Can trade off run time of tool for greater utilization to some degree,

but there are serious limits
– Beyond 80% utilization, there is a good chance that routing will fail.

47Texas A&M University

Bitstream Generation

• A bitstream in FPGA-speak is a sequence of bits, which
– Determines how the FPGA fabric is customized in order to implement

the design.
– It determines how IOs, CLBs, and wiring are configured.

• This bitstream is loaded (serially) into the FPGA in a final step.
Now the FPGA is customized to implement the design we wanted.
– This loading typically takes a few seconds at most.

• Reprogramming simply means that we load a new bitstream on to
the FPGA.

