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ECEN 449 – Microprocessor System Design

FPGAs and Reconfigurable Computing

Some of the notes for this course were developed using the course notes for 
ECE 412 from the University of Illinois, Urbana-Champaign
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Objectives of this Lecture Unit

• Get a feel for the different technologies that can be used to 
implement a design
– Flavors of hardware technologies 
– Flavors of implementation methods

• Understand the basics of how FPGAs work
– So that the CAD tools in the lab make sense to you
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Software, Custom Hardware or Reconfigurable Hardware?

• When should we use software, “custom” hardware, or reconfigurable hardware?
• Software based systems are easiest to implement

– But there is a huge performance gap between software and hand-designed 
(custom) hardware systems

– Often 100-to-1 ratio of performance (speed) or performance/area
• But custom hardware systems not so good for general computing

– Big design effort (time, cost) are barriers to implementation
– Not practical to buy a new machine every time you want to run a different 

program
• Reconfigurable systems offer best-of-both-worlds

– Run-time programmability (in the field)
– Hardware-level performance (although lower than custom hardware)
– FPGAs and CPLDs are the vehicles for reconfigurable systems.
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Why is Hardware Faster Than Software?

• Spatial vs. Temporal Computation
– Processors  divide computation across time, dedicated hardware 

divides across space 
– But dedicated hardware is hardwired for a specific task.
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Why is Hardware Faster Than Software?

• Specialization:
– Instruction set may not provide the operations your program needs
– Processors provide hardware that may not be useful in every program 

or in every cycle of a given program
• Multipliers
• Dividers 

• Instruction Memory
– Processors need lots of memory to hold the instructions that make up 

a program and to hold intermediate results.
• Bit Width Mismatches

– In general, processors have a fixed bit width, and all computations are 
performed on that many bits

• Multimedia vector instructions (MMX) a response to this
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So why not just use Hardware?

• Dedicated hardware is 
– Dedicated (not flexible)
– Takes long to design and develop (typical processor takes a handful of 

years to design, with design teams of a few hundred engineers)
– This is expensive!
– Only way to justify such an effort is if the customer demand 

guarantees high volume sales
• So there is a strong need for a design approach which has 

performance comparable to dedicated hardware, with ease-of-
programmability comparable to software.

• Answer?   Reconfigurable computing (FPGAs, CPLDs and their 
cousins)
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Good Applications for Reconfigurable Computing

• Data Parallelism
– Execute same computations on many independent data elements
– Pipeline computations through the hardware

• Small and/or varying bit widths
– Take advantage of the ability to customize the size of operators

• Low-volume applications which require rapid design turn-around 
time and hardware-like speeds
– Several telecom, DSP (filters), radar, genomics (DNA sequence 

matching), processor emulation, neural network and similar 
applications.
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Will FPGAs Defeat CPUs?

• Capacity: Instructions are very dense representation, logic blocks 
aren’t

• Tools: Compilers for reconfigurable logic aren’t very good
– Some operations are hard to implement on FPGAs
– C-for-FPGA technology is improving fast, though

One approach to capacity is to exploit the 90-10 rule of software
– Run the 90% of code that takes 10% of execution time on a 

conventional processor
– Run the 10% of code that takes 90% of execution time on 

reconfigurable logic
• But the temptation to merge the two worlds is real

– Programmable-reconfigurable processors
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A Peek Under the Hood

• In the next few slides, we will peek under the hood of some of 
competing hardware based digital system design platforms

• We will cover
– Application Specific ICs (ASICs). 

• Examples are IP routing ICs
• SSI/MSI/LSI/VLSI

– Reconfigurable (also sometimes called programmable) ICs. 
• Examples are FPGAs, CPLDs

– Full custom Integrated Circuits (ICs). 
• Examples are processors, GPUs, network processors, DSP processors.
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• Very high capacity today -- 10-100M transistors
• Very high speed – 500MHz+

– Integration
– Specificity

• Can use any design style below (or a hybrid)
– Full Custom
– Standard-cell (synthesized) – dominating methodology due to 

manufacturing considerations
• Long fabrication time

– Weeks-months from completed design to product
• Only economical for high-volume parts

– Making the masks required for fabrication is becoming very 
expensive, in the order of $1M per design

Application Specific Integrated Circuits
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Deep Submicron Design Challenges

• This slide discusses why ASICs are becoming less popular in 
recent times (compared to reconfigurable ICs)

• Physical effects are increasingly significant
– Parasitics, reliability issues, power management, process 

variation, etc. 
• Design complexity is high 

– Multi-functionality integration
– Design verification is a major limitation on time-to-market

• Cost of fabrication facilities and mask making has increased 
significantly
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Rapid Increase in Manufacturing Cost

Source: EETimes
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The Cost of Next Generation Product 

Source: 
IBS Inc.
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Programmable Logic Devices
• Early version: Mask-Programmable Gate Arrays

– Build standard layout of transistors on chip
– Customer specifies wiring to connect transistors into gates/system
– Only has to go through last few mask steps of fabrication process, so 

faster than full chip fabrication
– May become popular again in the near future

• Newer version: Programmable Logic Devices (PLD)
– Use AND-OR array to implement arbitrary Boolean functions
– Programmed by burning fuses that define connection from input wires 

to gates
– Customer site programming allows rapid prototyping
– Limited capacity, functionality

• Generally have to be used in conjunction with other parts to hold state
• Used to implement logic with moderate number of inputs (< 20)
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Programmable Logic Device Advantages

• Short TAT  (total turnaround time)
• No or very low NRE (non-recurring engineering) costs.
• Field-reprogrammable
• Platform-based design
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Today - Two Major Types of Programmable Logic

• CPLD (complex programmable logic device) 
– coarse-grained two-level AND-OR programmable logic arrays (PLAs) 
– fast and more predictable delay 
– simpler interconnect structures

• FPGA (field programmable gate array) 
– fine-grained logic cells
– high logic density
– good design flexibility (field programmable), easy redesign (just reprogram 

the chip!)
– arguably more popular 

• Increasing ASIC design costs are making FPGAs more popular. This 
technology is therefore important to learn about. Hence this course.
– Enables “garage” technology companies to thrive. This has a huge impact.
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Evolution of the FPGA
• Early FPGAs used mainly for “glue logic” between other components

– Simple CLBs, small number of inputs
– Focus was on implementing “random” logic efficiently

• As capacities grew, other applications emerged
– FPGAs as alternative to custom IC’s for entire applications
– Computing with FPGAs

• FPGAs have changed to meet new application demands
– Carry chains, better support for multi-bit operations
– Integrated memories, such as the block RAMs in the devices we’ll use
– Specialized units, such as multipliers, to implement functions that are 

slow/inefficient in CLBs
– Newer devices incorporate entire CPUs: Xilinx Virtex II Pro has 1-4 

Power PC CPUs (we will use such a device in our lab!!!)
• Devices that don’t have CPU hardware generally support synthesized 

CPUs
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Full Custom ICs

• These have captured an important niche in hardware 
implementation of systems

• Microprocessors, GPUs, network processors, DSP processors are 
key examples.
– HIGH sale volume (required to justify huge development cost and 

time)
– These are often the flagship products of many semiconductor 

companies (Intel, IBM, AMD, TI, Freescale, etc)
– These designs are “custom” designed, to do a specific task extremely 

fast, with minimum area and power.
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FPGAs in Detail

• Now in the next few slides, we will look at the technology that is 
inside an FPGA IC. 

• This will allow us to understand how the FPGA works
• After this, we will be able to make sense of the design flow that is 

used to design a FPGA based circuit.
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Field-Programmable Gate Arrays

• Based on Configurable Logic Blocks (CLB)
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A Generic FPGA Architecture
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What’s in a CLB?
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   Table
   (LUT)
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Xilinx CLB – a.k.a. “Slice”
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An Implementation of a 4-input Look-up Table (4-LUT)

Out = f (in0, in1, in2, in3)

In0 In1 In2 In3

Out

…

16 
SRAMs
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Input-Output Blocks

• One IOB per FPGA pin
– Allows pin to be used as input, output, or bidirectional (tri-state)

• Inputs
– Direct
– Registered
– Drive dedicated decoder logic for address recognition

• IOB may also include logic for boundary scan (JTAG)
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Xilinx IOB
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Interconnect

• 2-Dimensional mesh of wires, with switching elements at wire 
crossings to control routing
– Bit patterns stored into the switch FFs determine routing
– Switch connections programmed as part of configuring array

• To optimize for speed, many designs include multiple lengths of 
wire
– Single-length (connect adjacent switches)
– Double-length (connect to switches two hops away)

• Long lines (run entire length/width of array)
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Interconnect Diagram
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One Commercial FPGA, Altera Stratix II
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Chip Shot - Xilinx Spartan-3 die image

• Note the regularity…
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Design Variables

• The following issues are something that the company which 
designs the FPGA needs to worry about. The user of the FPGA is 
agnostic to these issues.

• # of inputs to LUT
– Trade off number of CLBs required vs. size of CLB and routing area

• How is logic implemented
– Switch based? Gate based?
– SRAM configuration? Fuse burning configuration?

• Flip-flop in CLB?
• Additional Functionality

– Carry chains, CPU’s, block RAM files
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Design Flow for Programmable Logic
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FPGAs – Pros (recap)

• Reasonably cheap at low volume
– Good for low-volume parts, more expensive than IC for high-volume 

parts
– Can migrate from SRAM based to fuse based when volume ramps up

• Short Design Cycle 
• Reprogrammable (~1sec programming time)

– Can download bug fix into units you’ve already shipped
• Large capacity (100 million gates or so, though we won’t use any 

that big)
– FPGAs in the lab are “rated” at ~1M gates for 30K LE’s

• More flexible than PLDs -- can have internal state
• More compact than MSI/SSI
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FPGAs – Cons (recap)

• Lower capacity, speed and higher power consumption than building
an ASIC
– Sub-optimal mapping of logic into CLB’s – often 60% utilization
– Much lower clock frequency that max CLB max toggle rate – often 

40%
– Less dense layout and placement and slower operation due to 

programmability 
• Overhead of configurable interconnect and logic blocks

• PLDs may be faster than FPGA for designs they can handle
• Need sophisticated tools to map design to FPGA. But the FPGA 

vendor typically provides these tools (at a cost).



35Texas A&M University

FPGA Design Flow

• Now that we know what the circuit structure inside an FPGA is, lets 
see how we go about programming an FPGA.

• In other words, we will briefly cover the steps that we undertake 
between 
– The conception of a design idea
– The decision-making step of whether an FPGA will be the correct 

hardware platform for the design
– The design flow we follow to obtain an FPGA based hardware 

realization of this design.
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From Concept to Circuit

• Need to specify your design and then implement it as a functioning 
system

• Trade-offs between time/cost and efficiency
– Performance of final system
– Amount of silicon area required (manufacturing cost)
– Time to manufacture
– Power consumption

• Need to think about a number of factors to make decision
– Sales volume
– Profit margin and how performance affects it
– Time-to-market concerns, particularly if trying to be the first product 

in a new area
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High-Level Design

• Problem 1: modern designs are just too complex to keep in your head at 
one time

– Custom chips approaching 100M transistors
– FPGA designs approaching 1M gates

• Problem 2: Even if you could design complex systems by hand, it would take too 
long

– 100M transistors at 10s/transistor = 133.5 person-years
– Transistor counts and system speed increasing at 50% or so/year
– Design time is critical

• # transistors per chip increasing at 50%/year
• # transistors per engineer-day increasing at 10%/year

• Need techniques that reduce the amount of human effort required to design 
systems
– Let humans work at higher levels, rely on software to map to low-level designs
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Increasing Design Abstraction

• Old way: specify/layout each device by hand
– Early chips were laid out by cutting patterns in rubylith with knives

• Current State of the Art: Combination of synthesis and hand design
– Specify entire system in HDL (Verilog or VHDL), simulate, and test
– Use synthesis tools to convert non-performance-critical parts of the design to 

transistors/gates
– Human designs critical components by hand for performance

• Where Things are Going: System-on-a-Chip Design
– Specify design out of high-level components (cores)
– Integrate sensors, transmitters, actuators, computers on a chip
– Rely very heavily on tools to map design to software and hardware.
– XUP (the board we will use in the lab) is an SoC design vehicle
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(FPGA) Design Flow
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Design Entry

Two main methods:

• Text entry (VHDL/Verilog):
– Compact format, no special tools required
– Good for high-level designs and control logic

• Schematic Capture: Draw pictorial representation of circuit, tool converts 
into design (typically HDL description)
– Traditionally used for low-level (transistor) designs, regular structures
– Commonly used today in conjunction with text entry to provide visual 

viewing of overall structure of a design
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Simulation

• Two types of HDL simulators
– Interpreted: runs slower but more versatile and no compilation time
– Compiled: runs faster but require compilation time and often not as versatile 

partly due to needs to compile all library components used.
• Both typically use Discrete-Event techniques

– Divide time into discrete steps
• User can select time step to trade accuracy vs. run-time

– Keep lists of events that have to be resolved at each time step.
• At each time step, resolve all events for the time step and schedule events for 

later time steps
• Output:

– Text from output/print statements in your design
– Errors from assert statements
– Waveform traces

• Like any testing, the key is having good tests. The designer creates these!
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Implementation of an FPGA Design

Going from simulated Verilog design to circuits

• 5 Phases
– Synthesis
– Timing Analysis
– Technology Mapping
– Place and Route
– Bitstream Generation

(Sometimes do additional timing analysis after place and route just to 
make sure that the timing is good)
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Synthesis

Transforms program-like VHDL into hardware design (netlist)
• Inputs

– HDL description
– Timing constraints (When outputs need to be ready, when inputs will 

be ready, data to estimate wire delay)
– Technology to map to (list of available blocks and their size/timing 

information)
– Information about design priorities (area vs. speed)

For big designs, will typically break into modules and synthesize each 
module separately
– 10K gates/module was reasonable size 5 years ago, tools can 50-100K 

gates now
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Timing Analysis

Static timing analysis is the most commonly-used approach
• Calculate delay from each input to each output of all devices
• Add up delays along each path through circuit to get critical path
• Works as long as no cycles in circuit 

– Tools let you break cycles at registers to handle feedback
• Also, ignores false paths in the design.

• Trade off some accuracy for run time
– Simulation tools like SPICE will give more accurate numbers, but

take much longer to run
• If the netlist passes timing analysis tests, we proceed further
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Technology Mapping

• Technology mapping converts a given Boolean circuit (a netlist) 
into a functionally equivalent network comprised only of LUTs or
PLAs
– Basically, can divide logic into n-input functions, map each onto a 

CLB.
• Technology mapping is a crucial optimization step in the 

programmable logic design flow
• Direct impact on 

– Delay (number of levels of logic)
– area/power (number of LUTs or PLAs)
– Interconnects (number of edges)

• Harder problem: Placing blocks to minimize communication, 
particularly when using carry chains
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Place and Route

Synthesis generates netlist -- list of devices and how they’re 
interconnected

Place and route determines how to put those devices on a chip and 
how to lay out wires that connect them

Results not as good as you’d like -- 40-60% utilization of devices and 
wires is typical for FGPA
– Can trade off run time of tool for greater utilization to some degree, 

but there are serious limits
– Beyond 80% utilization, there is a good chance that routing will fail.
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Bitstream Generation

• A bitstream in FPGA-speak is a sequence of bits, which
– Determines how the FPGA fabric is customized in order to implement 

the design.
– It determines how IOs, CLBs, and wiring are configured.

• This bitstream is loaded (serially) into the FPGA in a final step. 
Now the FPGA is customized to implement the design we wanted.
– This loading typically takes a few seconds at most.

• Reprogramming simply means that we load a new bitstream on to 
the FPGA.


