IEEE Transactions on Power Delivery, Vol. 5, No. 2, April 1990

-905

A NEURAL NETWORK APPROACH TO THE DETECTION OF
INCIPIENT FAULTS ON POWER DISTRIBUTION FEEDERS

Sonja Ebron
Student Member IEEE

David L. Lubkeman
Member IEEE

Mark White
Member IEEE

Electric Power Research Center
College of Engineering
North Carolina State University
Raleigh, NC 27695-7911

ABSTRACT

A high-impedance fault is an abnormal event on an electric
power distribution feeder which can not be easily detected
by conventional overcurrent protective devices. This paper
describes a neural network strategy for the detection of this
type of incipient fault. Neural networks are particularly
well-suited for solving difficult signal processing and pattern
recognition problems. An optimization technique allows a
network to “learn” rules for solving a problem by processing
a set of example cases. The data preprocessing required
to set up the training cases and the implementation of the
neural network itself are described in detail. The potential
of the neural network approach is demonstrated by applying
the detection scheme to high-impedance faults simulated on a
model distribution system.

Keywords: High-Impedance Faults, Neural Networks

INTRODUCTION

Description of High Impedance Faults

A high-impedance fault (HIF) can be defined as an abnormal
event on a primary distribution feeder which can not be easily
detected by modern protective devices. Most HIFs involve cur-
rent levels much less than those of bolted (short-circuit) faults,
and can not be reliably detected by conventional overcurrent
devices. These faults often exhibit arcing phenomena when
no solid return path for current is available, resulting in fault
currents with noticeable high-frequency components. Unfortu-
nately, this same behavior can result from other events such as
capacitor switching and transformer tap changing. In addition
to service interruption, HIFs can result in fires, electric shock,
and the ensuing utility liability. Even though the actions taken
to detect these faults may be identical to those of bolted fault
clearance, the motivation for HIF detection is improved public
safety rather than system protection [1].

Previous Research Efforts

The most common detection scheme for HIFs involves lowering

the settings on overcurrent protection devices. However,

89 TD 377-3 PWRD A paper recommended and approved
by the IEEE Power System Relaying Committee of the
IEEE Power Engineering Society for presentation at
the IEEE/PES 1989 Transmission and Distribution
Conference, New Orleans, Louisiana, April 2 - 7, 1989.
Manuscript submitted October 7, 1988; made available
for printing January 19, 1989.

since most HIFs produce current levels indistinguishable from
normal loads, this method can result in unnecessary service
interruptions. Another simple technique calls for lowering
the settings on ground relays in hopes of detecting abnormal
ground currents. This is obviously implausible for multiply
grounded systems and unreliable for feeders with a normally
high degree of imbalance [2]. Researchers at Westinghouse
Electric Corporation and Pennsylvania Power & Light have
recommended the use of a Ratio Ground Relay[3]. Based on the
concept that the amount of load imbalance on a given feeder is
invariant over a small time interval, these researchers suggest
computing the ratio of neutral current to positive-sequence
current (called RGR) as a fault indicator. Devices for fault
detection using this method have been in use since 1982 [4].

Since changes in feeder load occur slowly, another detection
scheme seeks to measure the rate of change in current. Again,
most HIFs do not change current levels at all, rendering this
scheme unreliable [5]. A more sophisticated technique involves
finding a Chi-squared test statistic, using 60-Hz sequence
components and harmonics, to detect HIFs [6]. Like the RGR
method, this technique seeks a change in feeder imbalance
to indicate the presence of a fault. After implementation,
the method failed in 60% of cases [7]. Microprocessor-based
implementation in 1985 produced slightly better results [8].

Another scheme uses increases in frequency components
near 60 Hz to detect faults. These 60-Hz parameters normally
dominate the frequency spectrum, so it is difficult to detect
meaningful changes in them [9]. A similar method relies on
analysis of the third harmonic, which is slightly more sensitive
to change, to signal the occurrence of an HIF [10]. None
of these techniques has had sustained and reliable success in
practice.

Yet another suggested scheme is to monitor several line
segments and buses in an effort to identify low-current or
low-voltage conditions downstream from a fault [11]. This
technique, though undoubtedly reliable, is precluded by the
high cost of metering. Possibly the most successful method
involves detecting increases in 2-10 kHz frequency compo-
nents [12]. Both laboratory and staged-fault tests indicate that
arcing waveforms contain substantial high-frequency elements.
However, high-frequency signal grounding by capacitors is a
major stumbling block to HIF detection by this method [13]. A
knowledge-based (expert) system has recently been developed
which attempts to detect faults by monitoring frequency
changes [14]; it remains untested as of this date. Clearly,
no technique based on only one HIF characteristic is suitably
reliable for detection of these types of faults.

0885-8950/90/0500-0905$01.00 © 1990 IEEE

906

_TRAINING MODE _ OPERATIONAL MODE
+
1]
\
\ (SIMULATION : DATA FOR
\ STUDIES ‘ FAULT TO BE
\ ‘ CLASSIFIED
]
i (FAULTDATAY |
v _LIBRARY .
t +

PREPROCESSOR

L NEURAL NETWORK |

v

FAULT TYPE

Figure 1: Fault Detection by a Neural Network

Neural Network Processing Strategy

The strategy presented here for detecting high-impedance
faults is motivated by recent developments in parallel dis-
tributed processing, or connectionist theory. Though much
promise has been shown by expert systems technology, a
fundamental limitation is the a priori formulation of “rules”
for the device or system application. In other words, an expert
system solution to a given problem presumes that some human
expert can solve the problem. This is not a serious limitation
for many problems, since heuristic rules can be derived in most
cases; however, expert systems cannot be applied to problems
for which little human expertise exists, as is the case with high-
impedance faults. ' '

Connectionist theory is an emerging science which seeks
to model the parallelism and interconnectedness of the human
brain. A connectionist model has been developed which has the
potential, through pattern recognition and analysis, of deriving
rules for certain applications. This model, called an artificial
neural network, has shown dramatic results in “learning”
patterns of speech, handwriting, logic gate mappings, and
other applications, given only examples of the patterns [15]-
[19]. Recent advances in applications of the theory range from
visual and adaptive pattern recognition to motion detection. In
fact, VLSI implementation of a neural network is the focus of
current research. The parallelism inherent in neural networks
gives them more speed than traditional serial computers. Also,
the distributed nature of a neural network makes it robust, in
that loss of a small portion does not substantially decrease its
level of performance.

Neural network processing is distinguished from signal pro-
cessing by the capability for nonlinear interpolation. Modern
signal processing techniques perform linear interpolation of
input signals. That is, when unfamiliar input is presented
to an adaptive filter, the corresponding output lies on some
hyperplane (a line in two dimensions) between output for two
known inputs. In contrast, when a neural network is fully
trained, it is capable of mapping an unfamiliar input vector to
an arbitrary surface. In other words, a neural net generalizes
instead of performing “table-lookup”.

High-impedance faults result in currents that exhibit
certain characteristics. By careful observation of current
waveforms and frequency spectra, some characteristics may
be identified as peculiar to high-impedance faults, such as
large transients or ground return currents. To implement a
neural network scheme, a distribution feeder is simulated by
computer to provide samples of substation phase currents, with
which analysis of fault currents is performed. A library of
actual current measurements associated with various faults and
switching transients could also be used. A preprocessor is used
to produce any current characteristics of interest by performing
Fourier transforms, measuring transients, and computing other
parameters. A neural network is appropriately configured and
“trained” with these parameters from simulated or measured
waveforms. The network is then capable of processing feeder
current data in a real-time operating mode and based on
the past examples presented to it, determine whether a high-
impedance fault is present. A diagram of the neural network
strategy is shown in Figure 1.

INTRODUCTION TO NEURAL NETWORKS
Description of a Neural Network

A neural network consists of a set of connected nodes and
a propagation rule. A general node model is represented in
Figure 2. The node, or neuron, receives its input through
weighted links. This input may come from other nodes in
the network or from outside stimuli. An activation function,
usually a summation, acts on the input; the node’s internal bias
is then added to the summed and weighted input. The result is
called node activation. The node’s output is determined by an
output function, which responds to the activation. An example
is the S-shaped sigmoid shown in Figure 2. The propagation
rule of the node consists of its activation and output functions.
The node’s output travels along the links, or synapses, either
to other nodes or to the output of the system.

A neural network is simply a layered collection of these
nodes. The nodes are connected by links of varying weight. An
n-node network with a given propagation rule is fully described
by an n-dimensional internal bias vector and an n-dimensional
square weight matrix.

Many types of networks exist, but the research described
here focuses on feedforward layered networks, with each node’s
activation and output determined by summation and sigmoid
functions, respectively. In feedforward networks, all input
is received on one layer, and the resulting signals propagate
forward, one layer at a time, until the signals reach the last

INPUT(S)

BIAS
ACTIVATION
FUNCTION

OUTPUT
FUNCTION

PROPAGATION
RULE

LINKS OR
OUTPUT “— SYNAPSES

Figure 2: Neuron Model

INPUTS

NEURONS
B
3 B M
Was WEIGHTED
LINKS
5. 16.
-3. {-8
1.
16.
BIAS VECTOR WEIGHT MATRIX

Figure 3: Feedforward Layered Network

layer. An example of such a neural network is shown in
Figure 3, with a corresponding bias vector and weight matrix.

This particular network contains five nodes in three layers,
and only six weighted synapses are required to fully connect the
network. Each node on the first layer is connected to each node
on the second, and each node on the second layer is connected
to the node on the third. The last layer is referred to as
the output layer, since the network’s output is the response of
neurons on this layer. The first layer is referred to as the input
layer. Nodes on this layer differ from others in a feedforward
network; they are strictly linear in that the output of a node is
simply its one allowable input. Nodes on the input layer have
no internal biases. All other layers in the network are referred
to as hidden layers, since they are not accessible to the outer
environment.

Operation of a Neural Network

The operation of a neural network consists of the presentation
of a set of inputs and subsequent propagation of this input
through the network. The 5-node neural network shown in
Figure 3 can be used to illustrate the forward propagation of
input signals. In this example, inputs z; and z; are presented
to Node 1 and Node 2, respectively. Since nodes in the input
layer have linear propagation rules,

y1 =2 and y = z3. (1)

Activation for any node on the other layers is the sum of the
node’s internal bias and weighted outputs passed to it; that is,

T3 = w13y + waayz + bs
and

Z4 = wiay1 + w2y + by. (2)

Output for these nodes is determined by a sigmoid function,
such that

1 4 _ 1
and g4 = o

©)

907

where T is the chosen “temperature”, or degree of nonlinearity,
of the sigmoid function. For sigmoid function output, note that

au]jm Yo =0 and n].immy,‘=].
Finally,
Zp = WwasyYs + wasys + by €}
and
1
¥s = m- (5)

Hence, ys is the network’s response to inputs z; and zz. The
method is called forward propagation because node responses
on a given layer can only be calculated after those on the
preceding layer are found.

In general, then, forward propagation consists of passing
weighted and summed input signals through a chosen nonlin-
earity. It presumes knowledge of the network’s bias vector and
weight matrix. Again, once activation and output functions are
chosen, a neural network is completely described by its weights
and biases. Since a given neural network solves a specific
problem, or function, finding weights and biases for the network
is equivalent to finding the input/output relationship that
describes the function. Thus, neural networks are especially
appropriate and powerful when used to find relationships that
are difficult to describe explicitly, because weights and biases
can represent a given function.

Training of a Neural Network

In order for a neural net to learn the “rules” for solving a
problem, data sets describing the problem must be given.
These data sets consist of input vectors and desired, or target,
output vectors for each input vector. A full training set for a
neural network describes the full range of expected inputs and
associated, desired outputs.

The neural net used in this research is trained by a learning
rule called the Back Propagation Learning Algorithm [20],
alternately known as the Generalized Delta Rule. Using the
network of Figure 3 as an example, small random weights are
first assigned to the network links. These weights are

w;; and b; for ¢ =1,...,4and 7 =3,...,5,

with the weights of nonexistent links (w;s, for instance) set to
zero. To activate the network, an input vector p, consisting
of elements z;1p and z, is presented. Forward propagation
is performed on this input, resulting in a response, ysp. The
output error, defined as

2

E, (t — '-'1510)2) (6)

B

is then calculated, where ¢, is the target, or desired output.
The objective of the learning algorithm is to minimize this
output error for each training vector. The error must be
allocated to all nodes in the network (except input nodes) so
that weights connected to the nodes can be changed.

Let
§jp for 7=3,...,5
represent allocated node errors. The output error, E,, is locally
minimized when its gradient, —ys, (£, — ysp), is zero. Thus,

assigned node error for the output node must be proportional
to ¥sp. Any change in the objective function should be in the

908

direction of steepest descent (or negative gradient), so that
assigned node errors, in general, are proportional to

e—"sp /T

Ysp = T——(l + e_""/T)z

= %!Ibp(l ~ Ysp) - (7)

This means that the assigned error for the output node is
simply

Sep = Usp (tp - Ysp)

= %-’Jﬁr (1 —ysp) (25 — Ysp) (8)

The assigned error for a node on the hidden layer depends
on weights connecting the node to the output node(s) and on
the assigned error of the output node(s). Hence,

1
b3p = Tyi%p (1 — ysp) (8spwas)
and

1
bap = Ty‘ip (1 = yap) (6spwas) . (9)

No error is attributable to input nodes, whose propagation
rules are linear. In this algorithm, node errors at the output
layer must be calculated before those at the hidden layer can
be determined; that is, node errors are propagated backwards.

Weights are changed to reduce the output error. The

changes in weights are

Awijp =nbjpyip and Abj, = nbip

fori=1,...,4, =3,...,5,

(10)

where 7 is the learning rate, a constant between zero and one.

Weights are not changed at this point, however. First, weight
changes are calculated for each input/output vector, then new
weights are computed by

k+1 ke E : k+1
w"]- =w;; + Aw,-,-,
P

and
E+1 _ gk kt1
Bt =+ AbY
P
fori=1,...,4, =3,...,5.

(11)

The entire process is repeated with these new weights,
starting with the first training vector. The Back Propagation
Learning Algorithm consists of repeatedly passing the training
set through the neural net until its weights minimize the output
errors over the entire set. At this point the objective function,

E =) E,, (12)

has reached a local minimum.

DATA PREPROCESSING

Need for Preprocessing

The neural network approach to the detection of high-
impedance faults consists of three basic tasks — collecting
sets of sampled, processed feeder line currents, using these sets
to train a neural network by error propagation, and testing
the network on separate sets of processed line currents. The
preprocessor is an integral part of this strategy. Training
cases were developed using a computer simulation of high-
impedance faults on a distribution feeder. The simulation
generates samples of current waveforms on three phases. Since
these samples are taken at a high frequency, it is impractical to
use them directly as input for a neural network. Hence, certain
characteristics of the waveforms must be identified and reduced
to quantitative form in order for the network to distinguish
between normal and abnormal feeder operation.

Simulation of a Distribution Feeder

Training cases for a typical 12 kV distribution system are
generated through the use of the Electromagnetic Transients
Program (EMTP) [21]. EMTP readily handles switch closings
or openings at specified or random times; thus, the program
is ideal for fault simulation and transient analysis. Since a
successful HIF detection scheme must be able to distinguish
between normal current harmonics and the possible arcing from
a fault event, harmonic sources are included in the simulation.
Several induction motors fed from a power electronic circuit
are set up to provide this effect. Capacitors are also included
in the feeder model to simulate switching events that must
be distinguished from faults. Capacitors may also trap and
ground any fault signals that propagate back to the substation.
Switches connected from distribution transformers to high-
impedance elements (on the order of load impedances) are used
to represent the incipient faults.

A computer program is used to randomly generate the in-
put data in the EMTP format, execute EMTP, calculate chosen
parameters of interest from the resulting current samples, and
then repeat this process until the number of cases specified by
the user has been collected [22]. Al EMTP cases vary from a
fixed operating point (base case) only in the frequency of fault
arcing (0-10 kHz), size of passive loads (+20%), size of line and
load fault impedances (+20%), size of induction motor loads
(£20%), switching times (0-169 msec) and locations, and diode
conduction voltages (+£25%). In all other respects, generated
cases are identical to the base case. Four types of cases are
generated:

. normal load switching cases,
. normal load and capacitor switching cases,

- high impedance fault cases with load switching,

B W N e

. high impedance fault cases with load and capacitor
switching.

Selection of Neural Network Input

Certain features of high-impedance faults may be observable by
inspecting the waveforms associated with such faults. Since a
typical distribution feeder includes constantly changing loads,
tap-changing transformers, switched capacitors, and power-
electronic loads, then various transients associated with har-
monic current propagation, capacitor switching, load switching

(FEEDER SIMULATION)

PHASE
CURRENTS

NEUTRAL
CURRENT

SAMPLE
SETS

T

DATA PREPROCESSOR

|
1.
C)

TRAINING
VECTOR

NEURAL NETWORK

'

FAULT INDICATOR

Figure 4: Preprocessing of Fault Simulation Data

and other time-varying phenomena will normally be observed.
Hence, information obtained by inspection of current wave-
forms must allow differentiation between a high-impedance
fault and a normal transient event.

The preprocessor extracts pertinent information on the
state of the feeder over 10 cycles of operation. The current
samples used to train the network are first separated into sets
of one cycle each. For each set, 20 parameters are computed
to represent the feeder over 1 cycle of operation. These
parameters are

o the peak value of transient current over the three phases,

o the current (on the corresponding phase) before, and
immediately after, the largest transient occurs,

o the number of transients falling within 75% of the
maximurm perturbation,

the magnitude of positive sequence current,

¢ the amount of imbalance between phases (using the
Ratio Ground Relay method [3]),

o first, third, and fifth harmonic components of the neutral
current (as suggested by [10]),

o frequency activity in the neutral current over ten sections
of its frequency spectrum (as suggested by [12]).

Several of these quantities, such as positive sequence current,
are for reference purposes only; they allow the neural network
to compare transient current levels and other parameters
and find relative amounts of disturbance. Figure 4 shows
the arrangement for including the preprocessor in the fault
detection scheme.

Collection of a Training Set

By repeatedly analyzing EMTP test cases and processing the
resulting data, the preprocessor collects a training set for the
neural net. Each vector in the training set represents 10 cycles
of feeder operation; it contains 200 inputs and one output
indicating whether the feeder is undergoing normal operation
or a fault. The target is 0.1 for normal feeder operation and
0.9 for a fault. These values are chosen because of the limits

909

of neural network output (sigmoid) functions, which are suited
only to logic gate mappings.

Though the output of each training case fits within the
tolerable range of a sigmoid function, elements of the cor-
responding input may fall anywhere on the positive real
line. If the range of values for a given input parameter
includes numbers on the order of one or greater, nodes in the
network quickly become saturated, and learning is prohibited.
Large input values initially place each node output near one;
node outputs are thereby predetermined. Since the learning
algorithm normally pushes node responses to a saturation level,
the network is “tricked” into believing the initial weights are
accurate.

Thus, the input range for each vector in the training set
must be contracted (or expanded) to the range [0,1]. For
example, if M is the number of training cases, the first element
of every training vector constitutes a collection of signals,
{Zi1,--+&jpy...,%jm}, for the j** node in the neural net’s
input layer. The values of these signals range from min; to
max;. The input space {min;, max;] is transformed to [0, 1] by
letting

z: Zjp — NNy
P

max; — min; (13)
for the p** training case. By this transformation, the training
set for high-impedance fault detection becomes the represen-
tation for a logic gate function. Since the transformation is
nonlinear, it changes the direct relationships between inputs
in each vector. Relationships between transformed inputs still
exist, however; they are simply redefined for presentation to
the neural net. This additional preprocessing of data can be
thought of as an external hidden layer of the network.

Thus, a training set is collected by repeatedly generating
EMTP cases and preprocessing the resulting data. For this
particular study, approximately 50% of the cases generated
have load changes only, 20% have both load changes and
capacitor switching, 20% have load changes and a fault, and
10% have load changes, capacitor switching, and a fault. Each
vector in the training set represents one EMTP case. Again, it
contains 200 inputs and one output indicating whether the case
simulates normal operation or a fault. Since a preprocessing
routine randomly decides when to generate a fault case, it is
able to specify the training set output, or target, for each case.

FAULT DETECTOR IMPLEMENTATION

Overview of Detection Strategy

Simulation of an HIF fault detector involves training a neural
network with processed current samples collected from the
feeder, then testing the network with forward propagation of
additional samples. A computer program that implements
the Back Propagation algorithm receives a training set and
produces an initial weight matrix of appropriate size. Initial
elements of [w;;] and [b;] consist of small random values. In
addition to an input/output vector for each case, the training
set contains a configuration for the neural net. The number
of layers and the total number of nodes are specified, as well
as the number of nodes in each layer. The number of cases
available for training is also given.

The training algorithm forms a neural net with 200 input
nodes and random weights. For each input/output vector
in the training set, the algorithm computes changes in the
network’s weights that minimize the difference between the

910

target output and that resulting from forward propagation of
the vector’s input signals. The entire training set is repeatedly
passed through the neural net until the weights minimize
output errors over all input / output vectors. Since these vectors
represent randomly-collected line currents from the simulated
feeder, the weights should be capable of producing an output,
for new input signals, that is similar in value to targets
specified for similar input vectors in the training set.

In order to test the effectiveness of the neural network
strategy, the weights found during training are tested with
unfamiliar input vectors; these vectors are collected by the
preprocessor in the same manner as those in the training
set. When a 200-element vector is applied to the network,
the signals propagate forward until an output results. The
preprocessor places the targets for collected input vectors in
a separate file, so the network’s output can be checked. If
the output is incorrect, the input vector is used to retrain the
network, thereby obtaining a revised set of weights. Testing
and retraining are performed on-line, so the neural net is in
operation at this stage. Hence, the neural network can learn
from its mistakes.

Ezample of Preprocessing

The preprocessor routines are performed on 10 sets of data
representing one EMTP case. The preprocessor thereby
extracts pertinent information on the state of the feeder over
169 ms of operation. This time division of the data helps
to identify the onset of switching. Each set serves as a 1-
cycle “window” that may distinguish normal feeder operation
from a fault event when compared to other sets from the same
case. The 15,360 current samples produced by EMTP are
first separated into 1-cycle “windows”, each with 512 samples
per phase. For each window, 20 parameters are computed to
represent the feeder over 1 cycle of operation. Thus, the 15,360
samples produced by EMTP are reduced by the preprocessor
to 200 inputs for the neural net. These parameters are

. window number (1-10),
. peak value of transient current over three phases,

1
2
3. current before the largest transient occurs,
4. current after the largest transient occurs,
5

. number of transients greater than 25% of peak
transient,

. magnitude of positive sequence current,
. amount of imbalance on the feeder (RGR),

. fundamental component of neutral current,

©w o == O

. third harmonic component of neutral current,
10. fifth harmonic component of neutral current,
11. energy over the 0.95-2.37 kHz range,

12. energy over the 2.37-3.79 kHz range,

13. energy over the 3.79-5.21 kHz range,

14. energy over the 5.21-6.63 kHz range,

15. energy over the 6.63-8.05 kHz range,

16. energy over the 8.05~9.47 kHz range,

17. energy over the 9.47-10.89 kHz range,

18. energy over the 10.89-12.31 kHz range,

19. energy over the 12.31-13.73 kHz range,

Table 1: An Example of Preprocessing Results

ot Tet Set Set Tat Set Sot Set Tet L)
#1 #3 #3 4 #5 #6 #7 #8 #9 #10
1 1 3 3 4 5 [T 8 9 10
1K.45 7.71 36.18 734 T.43 15.19 89.30 92.40 | 88.78 88.65
7.33 | 386 | 18.08 | 3.87 | S.71 | 7.5 | 44.65 | 46.25 | 44.38 | 44.33
0.00 | 1.02 | 1,59 | 1.08 | 0.96 | 0.8 | 16.93 | 1.48 | 3.01 | 7.e1
16| s41 7 33¢ | 330 B0 287 | 371 380_| 380
128.1 137.4 127.6 114.2 | 128.4 128.8 | 86.88 | 140.9 141.1 140.9
7 0.13 0.13 0.09 0.07 0.08 0.06 0.31 0.33 0.23 0.25 |
8 | 23.77 | 23.61 | 14.07 | 10.99 | 11.07 | 11.19 | 36.30 | 45.59 | 44.83 | 44.74
© | 0.14 | 018 | 340 | 0.10 | 0.06 | 0.18 | 7.08 | 1.30 | 0.47 | 0.55]
10 | 0.14 | 0.06 | 0.99 | 6.07 | 0.05 | 033 | 3.07 | 076 | 6.15 | 0.17
11| 0.20 | 0,16 | 4.84 | 0.25 | 0.i8 | 2.6¢ | 8.4 | 5.13 | 0.51 | 0.83
12 0.23 0.15 2.60 0.18 0.12 1.94 4.43 1.91 0.38 0.70
0.60 0.46 3.38 0.48 0.47 1.22 3.10 1.38 0.56 0.84
0.64 19 | 2.00 | 0.36 | 0.28 | 0.37 | 3.51 | 1.08 | 0.39 | 0.78
0.37 36 | 1.38 | 0.357 | 0.39 | 0.40 | i5.36 | 7.31 | e.80 | 7.11
0.71 8 | 132 | 6.68 | 0.67 | 1.01 | 3.98 | 1.06 | 6.68 | 1.3
0.66 330 | 1.08 | 039 | 0.23 | 046 | 3.38 | 1.30 | 6.65 | 1.30
"0.38 | 090 | 0.81 | 0.36 | 0.35 | 0.4 | 3.81 | 1.683 | 1.02 | 1.87
0.27 .30 0.94 0.29 0.28 0.40 4.04 3.67 3.62 4.04
0.08 0.10 0.84 0.068 0.068 0.87 16.32 | 21.48 21.00 | 19.19

20. energy over the 13.73-15.15 kHz range.

An EMTP simulation of one event, and the subsequent
preprocessing, results in the 200 elements shown in Table 1.
The 20 parameters listed above are calculated for each of the
10 1l-cycle windows. In the table, values representative of
normal feeder operation are shown in columns 1-6, which cover
101.4 ms of time. In window 7, however, marked increases
in several frequency parameters clearly indicate the onset and
presence of a fault. In addition, the transient sizes, current
levels, and feeder imbalance all show changes when compared
to earlier cycles. These changes persist throughout the case
simulation.

The 200 elements in the table form one input vector for a
neural network. The associated output vector consists of one
element, which is a target value of 0.9. By repeatedly executing
EMTP data sets and reducing the resulting samples to 200-
element input vectors, the preprocessor collects a training set
for a neural network.

Testing of Neural Network Approach

A set of 50 training cases generated by the EMTP program
were used to test the neural network strategy. High-impedance
faults were simulated in roughly 30% of these cases. The
resulting input/output vectors formed a training set for high-
impedance fault detection. The neural network was configured
with 2 hidden layers and 801 nodes. There were a total of 200
input nodes and one output node. The number of nodes on the
first hidden layer was 200, while 400 nodes lay on the second.
The network required 120,400 weights and 601 biases for full
interconnection. Using the Back Propagation algorithm, the
network learned the patterns presented in 38 iterations of the
50-vector training set.

The weights generated during training were then tested
with unfamiliar input vectors, 15% of which represented
high-impedance faults. These vectors were collected by the
preprocessor in the same manner as those in the training set.
Unlike the training process, detection required no iteration and
only one input vector was known to the network at any given
time. Again, since the range of inputs did not conform to
that of a logic gate, a transformation of each input vector was
required. The transformation was accomplished by passing the

vectors
miny max;
: :
min; and max; ,
.
| minzoo maxaoo

where j is the index of an input node, to the high-impedance
fault detector. (These vectors were collected while training the
detector.) The range of input vector {Z1,...,%200} was then
reduced, or expanded, by letting

ZT; — min;

T = e————
max; — min;

(14)

Since the output range was fixed at [0,1] by sigmoid
functions in the network, a fault was indicated during on-line
operation when the network’s response to input surpassed 0.5.
In that event, the detection routine caused the user’s terminal
to sound an alarm and reported a “certainty factor”, analogous
to a probability, that a fault had occurred. This factor
was simply the output of the neural network. The program
temporarily suspended execution at this point to retrain (if
necessary) and to allow the user to end feeder observation.
When the detector was in error, the routine changed weights
in a manner that would allow it to respond to the same input
correctly. If continued operation was desired after a fault was
detected, the routine resumed propagation of input signals
until another fault occurred.

A detection set, consisting of 100 input vectors representing
feeder operation, was collected by the preprocessor and then
passed to the detector. Of the 15 HIF cases present in this
set, the network responded correctly to 10, though on-line
retraining undoubtedly helped to “fine-tune” its responses.
Of the remaining 85 cases, the network mistakenly caused
an alarm in 17. Interestingly, 19 of the 100 cases involved
capacitor switching in the absence of a fault, so the network
apparently had difficulty distinguishing between the two high-
frequency switching activities.

A more effective evaluation of a neural network approach
to the detection of high-impedance faults will require actual
field data. The simulations generated during the coutse of
this work were primarily designed to test whether a neural
network approach was technically feasible. Hence the current
waveforms generated were only representative of the types
of waveforms that could be generated by a high-impedance
fault. Using the EMTP program to more accurately simulate
the high-impedance fault phenomenon would be a separate
research project in itself, given that a suitable fault model could
be incorporated into the program.

A fault data library obtained from measurements in the
field would be used to train the network in a practical
implementation of a high-impedance fault detector. This
library would include cases corresponding to high-impedance
faults and normal system transients which have characteristics
similar to such faults. The neural network fault detector can
then be trained to identify high-impedance faults, taking into
account the special characteristics of each feeder. If fault
recording capabilities existed, then the cases that the neural
network fault detector failed to identify correctly could be used
to retrain the network.

911

The parameters used to characterige the current waveforms
and the number of data windows which were used to show
time-varying effects need to be reexamined in an actual
implementation. Many of the parameters used in this research
may not be needed for an effective fault detection system.
The parameters which are used to create the training set for
the neural network are designed to help discriminate between
a high-impedance fault and a normal system transient. An
opportunity exists for creating more effective input parameters
which will increase the detection efficiency of the neural
network.

Other Practical Considerations

Theoretically, neural networks can find a representation for any
observable phenomenon. Examples of some problem, taken
in its environment, can be used to find appropriate network
weights for its solution. However, several problems exist in
practice. First, data describing the phenomenon may be
difficult or expensive to obtain. In that case, simulation of
the environment is necessary, but the resulting error may lead
to a set of inaccurate weights. Also, the data must describe
the state, or condition, of the system with respect to the phe-
nomena being observed. For example, relevant characteristics
of high-impedance faults are evident in successive line current
samples, but they are not apparent in, say, energy consumption
levels over time. Appropriate state variables must be found to
describe a given system.

Second, samples of the environment’s state over time may
require an enormous number of input nodes which may, in
turn, require very large hidden layers. Though no constraints
on the number of network nodes (or weights) exists in the
training algorithm, implementation by computer places a limit
on the network’s size. This problem can be avoided by the
development of a data preprocessor, which transforms state
samples into concise and meaningful parameters of the system.
There is no guarantee, however, that representative features
can be found. If these characteristics are found, it may then
be impossible to quantify them.

CONCLUSIONS

High-impedance faults cannot be reliably detected and cleared
by conventional protective devices. A neural network strategy
for detecting these faults has been presented. This approach
consists of collecting samples of substation current during
normal and abnormal feeder operation, then using these
samples to “teach” a neural network the rules for fault
detection. The learning capability utilized in a neural network
approach makes it possible to adapt partially-trained fault
detectors to individual feeders. Although a great deal of
research still needs to be done, the neural network approach
shows great potential as a more effective strategy for detecting
such incipient faults.

Neural networks have shown astounding pattern recogni-
tion properties. Thus far, however, the greatest successes
of connectionist theory have been in communications and
signal processing applications. In the next few years, VLSI
implementations of neural networks will make it possible to
deploy this technology on a massive scale. Undoubtedly,
many more applications will be found for this new technology,
including presently intractable problems in power systems
research.

REFERENCES

[1] M. Aucoin, “Status of High Impedance Fault Detection”,
IEEE Transactions on Power Apparatus and Systems,
Vol. PAS-104, No. 3, March 1985, pp. 638—644.

[2] J. Carr, “Detection of High Impedance Faults on Multi-
Grounded Primary Distribution Systems”, IEEE Trans-
actions on Power Apparatus and Systems, Vol. PAS-100,
No. 4, April 1981, pp. 2008-2016.

[3] H. Calhoun, M.T. Bishop, C.H. Eichler, R.E. Lee, “Devel-
opment and Testing of an Electromechanical Relay to De-
tect Fallen Distribution Conductors”, IEEE Transactions
on Power Apparatus and Systems, Vol. PAS-101, No. 6,
June 1982, pp. 1643-1650.

[4] R.E. Lee and M.T. Bishop, “A Comparison of Measured
High Impedance Fault Data to Digital Computer Model-
ing Results”, IEEE Transactions on Power Apparatus and
Systems, Vol. PAS-104, No. 10, October 1985, pp. 2754
2758.

{5] J. Carr and G.L. Hood, “High Impedance Fault Detection
on Primary Distribution Systems”, Report for the Cana-
dian Electrical Association, November 1979, p. 43-44.

[6] “Detection of High Impedance Faults”, EPRI Report EL-
2413, Prepared by Power Technologies, Inc., June 1982.

[7] “Implementation of a High-Impedance Fault Detection
Algorithm”, EPRI Report EL-4022, Prepared by Power
Technologies, Inc., May 1985.

[8] S.J. Balser, K.A. Clements, D.J. Lawrence, “A
Microprocessor-Based Technique for Detection of High
Impedance Faults”, IEEE Transactions on Power Deliv-
ery, Vol. PWRD-1, No. 3, July 1986, pp. 252-258.

[9] B.M. Aucoin and B.D. Russell, “Detection of Distribution
High Impedance Faults Using Burst Noise Signals Near 60
Hs”, IEEE Transactions on Power Delivery, Vol. PWRD-
2, No. 2, April 1987, pp. 347-348.

[10] “High Impedance Fault Detection Using Third Harmonic
Current”, EPRI Report EL-2430, Prepared by Hughes
Aircraft Co., June 1982.

[11] L.A. Kilar, M. Rosado, H.F. Farnsler, R.E. Lee, “Innova-
tive Relay Methods for Detecting High Impedance Faults
on Distribution Circuits”, Proceedings of the American
Power Conference, Vol. 41, April 1979, pp. 1180-1183.

[12] “Detection of Arcing Faults on Distribution Feeders”,
EPRI Report EL-2757, Prepared by Texas A & M

University, December 1982.

(13] B.M. Aucoin and B.D. Russell, “Distribution High
Impedance Fault Detection Utilizing High Frequency
Current Components”, IEEE Transactions on Power Ap-
paratus and Systems, Vol. PAS-101, No. 6, June 1982,
pp. 1596-1606.

[14] B.D. Raussell and R.P. Chinchali, “A Digital Signal Pro-
cessing Algorithm for Detecting Arcing Faults on Power
Distribution Feeders”, Presented at the IEEE Power
Engineering Society 1988 Winter Meeting, New York, NY,
88 WM 123-2.

[15] T. Kohonen, “The ‘Neural’ Phonetic Typewriter”, IEEE

Computer Magazine, Vol. 21, No. 3, March 1988, pp. 11-
22.

[16] H.P. Graf, L.D. Jackel, W.E. Hubbard, “VLSI Imple-
mentation of a Neural Network Model”, IEEE Computer
Magazine, Vol. 21, No. 3, March 1988, pp. 41-49.

[17] S.E. Fahlman and G.E. Hinton, “Connectionist Architec-
tures For Artificial Intelligence”, IEEE Computer Maga-
gine, Vol. 20, No. 1, January 1987, pp. 100-109.

[18] J.L.Elman and D. Zipser, “Learning the Hidden Structure
of Speech”, ICS Report 8701, Institute for Cognitive
Science, University of California at San Diego, February
1987. '

[19] T.J. Sejnowski and C.R. Rosenberg, “NETtalk: A Parallel
Network that Learns to Read Aloud”, Technical Report
EECS-86101, John Hopkins University, 1986.

[20] D.E. Rumelhart, G.E. Hinton, R.J. Williams, “Learning
Internal Representations by Error Propagation”, in Paral-
lel Distributed Processing: Ezplorations in the Microstruc-
ture of Cognition (eds. Rumelhart & McClelland), Vol. 1,
MIT Press, 1986, pp. 318-362.

[21] "EMTP Rule Book - Version 1.0”, EPRI Report El-4541,
Vols. 1-2, Prepared by Systems Control, Inc., 1986.

[22] S. Ebron, A Neural Network Processing Strategy for
the Detection of High Impedance Faults, Master’s The-
sis, Electrical and Computer Engineering Department,
NCSU, 1988.

BIOGRAPHIES

Sonja Ebron was born in Durham, North Carolina in 1963.
She received her B.S.E.E. and M.S.E.E. degrees from North
Carolina State University in 1986 and 1988, respectively. Ms.
Ebron is currently a Ph.D. student and McKnight Fellow at the
University of Florida in Gainesville. She is also a member of the
IEEE Power Engineering, Computer, and Control Societies.

David Lubkeman was born in St. Louis, Missouri in
1957. He received his B.S.E.E., M.S., and Ph.D. degrees from
Purdue University in 1979, 1980, and 1983, respectively. Dr.
Lubkeman has been an assistant professor in the Department of
Electrical and Computer Engineering at North Carolina State
University, as well as a principal investigator in the Electric
Power Research Center, since 1983.

Mark White received his B.S.E.E. degree from the University
of Nebraska in 1971 and his Ph.D. degree from the University
of California, Berkeley in 1978. He served on the faculty at the
University of California, San Francisco from 1978 to 1986. Dr.
White has been an associate professor in the Department of
Electrical and Computer Engineering at North Carolina State
University since 1986. His areas of research include non-linear
adaptive signal processing algorithms and speech processing
for cochlear implants and hearing aides.

N. E. Nilsson (Ohio Edison Company, Akron, Ohio):
The authors are to be commended on their fine work.
However, it should be recognized that a neural network
strategy for analyzing high impedance ground faults is
highly theoretical and may require some refinements
before it becomes truly practical.

The authors have utilized neural networking
which is a branch of artificial intelligence. Accord-
ingly, there will be some interaction required by way
of consultation with a system operator[l][2]. It is
not clear from the paper whether the authors intend
for the neural network to alarm the operator, in which
case an explanation will be required describing the
condition which the neural network believes to be
abnormal in order to justify action on the part of the
operator; or if the neural network is to behave like a
fault protective relay and initiate a trip. In either
case, it will be necessary for the neural network to
explain why it tripped or alarmed. Would the authors
more specifically describe the ranges of the twenty
sensing neurons which would indicate a high impedance
ground fault with a high level of confidence?

A neural network learns by matching
patterns. The authors appear to have experimented
with one specific circuit. Are there a range of para—
meters which can be sensed which are universal to all
circuits or will the neural network have to learn a
different pattern for each and every different distri-
bution circuit?

I am left with the understanding that the
authors have simply taught the neural network to look
for either a normal load case or a high impedance
ground fault situation. A neural network can be
taught to look for several different patterns. If the
neural network in this can were taught to look for
capacitor switching and motor starting, for example,
would its rate of success be better at detecting a
high impedance ground fault? The reason for asking
this question is that if that neural network can learn
to identify things like capacitor switching which may
be similar to a ground fault, it is less likely that
it will incorrectly identify capacitor switching as a
ground fault.

As was pointed out in the paper, the neural
network learns by applying weighting factors to the
neural connections. There are a number of ways of
doing this. How did the authors determine that their
method was the optimum method? Could the weighting
routine provide a more accurate conclusion if it did
not have to provide an answer so fast?

The use of neural networks is somewhat like
the application of fuzzy logic to a rule based arti-
ficial intelligence expert system. There is a range
of probability that any particular conclusion is the
correct conclusion. 1 am not totally convinced that a
neural network of twenty sensor nodes can identify a
high impedance ground fault correctly anywhere and
under any circumstance on a distribution circuit with
one hundred percent probability of success. Neverthe-
less, the authors have shown that this technique is at
least partially successful and so I ‘would encourage
them to continue their work in this area.

[1] R. P. Schulte, S. L. Larsen, G. B. Sheble,
J. N. Wrubel and B. F. Wollenberg, "Artificial
Intelligence Solutions to Power System Operating
Problems," IEEE Transactions on Power Systems,
Volume PWRS-2, No. 4, November 1987, pp. 920-926.

[2] N. E. Nilsson, "Application of Computer
Artificial Intelligence Techniques to Analyzing
the Status of Typical Utility Electric Power
Plant Systems," IEEE Transactions on_ Energy
Conversion, Volume 4, No. 1, March 1989, pp. 1-8.

Manuscrint received May 31, 1989.

213

S. Ebron, D. L. Lubkeman, M. White: We thank Mr. Nilsson for his
interest in our work as well as for his thoughtful comments and questions.
We will answer them in the order in which they appear.

The discusser is correct when he states that the practical use of neural
networks for high-impedance fault (HIF) detection will require further
investigation. We made several points to that effect in our paper. Since this
approach involves a new technology, we concentrated on demonstrating the
procedure required in a practical application of neural networks. We chose
to use simulation studies so that we could have more control over the mix of
cases that were presented to the neural network. Future work will involve
training a neural network on real HIF data.

Mr. Nilsson asks whether the neural network would sound an alarm or
initiate a trip. We envisioned a scenario in which an operator would be
alarmed. The neural net need not explain specifically why it alarms, any
more than a smoke detector does. An alarm is caused by recognition of a
pattern of events indicative of an HIF. The activation of hidden neurons
would indicate which features triggered the alarm, but this type of
information might be difficult to interpret for use as an operational aid.

The discusser next asks for boundaries on the twenty input parameters
that would suggest the presence of a fault. This is a good question. The
answer is that we cannot readily describe the ranges of values for these
twenty parameters (over 1 cycle), the rates of change in those values (over
10 cycles), nor the correlations between parameters measured in each cycle,
that would indicate a fault. In a problem as complex as HIF detection, it is
difficult to state a ‘‘rule,”’ as in knowledge-based systems, that would
explicitly describe an HIF. For example, the rule governing output for an
XOR (exclusive-or) logic gate, shown in Figure 1, can be stated: ‘‘If input
#1 is high and input #2 is low, or if input #1 is low and input #2 is high, then
output is high—else, output is low.’” A neural network could be trained to
mimic the XOR gate using data in the truth table and the resulting weights
could be used to infer the rule being implemented. However, a neural net
that performs the XOR function [20] requires only five nodes, three node
biases and six weighted links (see Figure 1). Though the neural net
described in this paper is trained in the same manner, it consisted of 801
nodes, 601 biases, and 120,400 weights. Any inference of an HIF rule using
these weights would be mere guesswork, as would an inference based on
training data. If a set of explicit rules could be found, no further use of the
neural network would be required.

Mr. Nilsson asks whether any one set of parameters, such as the twenty
variables used in our research, can be relied upon to detect HIFs on a wide
range of distribution circuits. There are certain parameters that tend to
indicate an HIF on any circuit. Some of these parameters have been
identified in past work on HIF detection (reviewed in the paper); they
include information relating to high-frequency current components and a
high ratio of zero sequence to positive sequence current. However, since the
configuration and operating characteristics of feeders vary from utility to
utility, the parameter values indicating a fault will be relative to values
indicating normal operation. Also, some parameters may be more clearly
correlated to an HIF on certain types of feeders than on others. The feeder
voltage levels, types of customers, level of background harmonics, etc.,
would have to be taken into account. In short, each feeder would require a
customized neural network, but each network would accept the same types
of input and have the same configuration (number of nodes); the neural nets
would differ only in the values of link weights. This could be implemented
by training a network on examples relating to a number of circuits, and then
fine-tuning weights for a particular circuit.

The discusser asks whether we simply trained the neural network to
monitor normal and abnormal cases. Actually, the network was trained to
look for four distinct case types and to provide different output for each
type. The case types were as follows:

(1) Normal load switching—output 0.1,
(2) Normal load and capacitor switching—output 0.2,

Input #1

Input #2
TRUTH TABLE
Input |input | Output

#1 #2

O - =0

Cutput

Fig. 1. Truth Table and Trained Neural Network for XOR Gate Implementation

914

(3) Normal load switching with an HIF event—output 0.8,
(4) Normal load and capacitor switching with an HIF event—output 0.9.

As reported in the paper, the network was not effective in distinguishing
HIF events from capacitor switching. Performance could be improved by
including a number of outputs relating to indirect goals, such as identifying
capacitor switching and motor starting. It also may have helped to add
additional parameters for identifying the insertion of a capacitor, possibly
related to changes in reactive power flow.

Mr. Nilsson next asks whether our method for computing weights is
optimal, and whether we sacrificed accuracy for speed. As yet, there is no
optimal method of choosing weights in a feedforward layered network with
hidden layers. However, the method (developed by Rumelhart, et. al. [20D)
reviewed in the paper is based on a steepest descent algorithm that is
globally optimal for networks with no hidden layers [A]. Experience with
other applications has shown that this method is generally successful when
hidden layers are added, though optimality is not guaranteed [15-19]. This
training algorithm is not fast; it is an iterative procedure. For our case
studies, decreasing the error tolerance increased the training time but
produced a negligible change in weights and no improvement in accuracy.
However, in other applications, a relation between training time and
accuracy could exist. Note, however, that the time required to train the
network is unrelated to the speed at which the network operates in the
detection mode, since the weights used for fault detection are computed
during the training phase.

We disagree with the discusser’s assertion that neural networks are

comparable to fuzzy logic in expert systems. Unlike the latter form of
artificial intelligence, neural networks do not require explicitly-stated rules
with probabilities of rule accuracy. Indeed, a neural network forms its own
logic and stores that knowledge in its weights; instead of being given a rule,
it “‘learns”” one by example. In our neural network, there is no range of
probability associated with the network’s response; it is either right or
wrong in each case.

Finally, Mr. Nilsson expresses skepticism at the notion that a network of
twenty input nodes can flawlessly detect HIFs. Actually, there were 200,
not 20, input nodes in our network. However, we join the discusser in his
skepticism. We did not suggest that a network with even one million input
nodes could detect an HIF “‘anywhere and under any circumstance on a
distribution circuit with one hundred percent probability of success.”” Our
intent was to show the procedure by which a neural network could be used
in a practical application. Obviously, additional work is needed in
identifying a more effective set of input parameters for this particular HIF
detection technique. There are also a number of alternate neural network
configurations that could be tested.

References

[A] R. Rosenblatt, Principles of Neurodynamics, Spartan Books, New
- York, NY, 1959.

Manuscript received June 12, 1989.

